Azido-(Amino-)furanosyl Nucleosides and their Phosphoramidates

Darinka Katalenić and Vinko Škarić*

Laboratory of Stereochemistry and Natural Products, 'Ruder Bošković' Institute, 41001 Zagreb, Croatia

The ring-opening of 2,2'-anhydro-1-[5-azido- **5** and 5-benzamido- **3** 5-deoxy-3-*O*-methylsulfonyl- β p-arabinofuranosyl]uracil by the ion exchanger Dowex 50 (H⁺) afforded the corresponding 1-[5-azido- **8** and 5-benzamido- **12** 5-deoxy-3-*O*-methylsulfonyl- β -p-arabinofuranosyl]uracil. Hydrogenolysis of the azido nucleosides over Pd-black in the presence of benzoic acid anhydride led to the corresponding benzamido nucleosides in high yields. The 5'-azido-2',3'-oxirane **10** on reaction with ethanolic ammonia generated 1-(3-amino-5-azido-3,5-dideoxy- β -p-arabinofuranosyl)uracil **15** and 1-(2-amino-5-azido-2,5-dideoxy- β -p-xylofuranosyl)uracil **16** in a ratio 2:1. The 5'-*O*-mesyl-2',3'-oxirane **25**, on being treated with NaN₃ in DMF at 100 °C, afforded 2',5'-anhydro-1-(3-azido-3-deoxy- β -p-arabinofuranosyl)uracil **26** (54.5%), 3',5'-diazido- β -p-arabinofuranosyl **27** (20.6%) and 2',5'-diazido- β -p-xylofuranosyl **28** (5.4%). The hydrogenolysis of **5** over Pd-black proceeded into 2,5'-imino-1-(3-*O*-methylsulfonyl- β -p-arabinofuranosyl)uracil **32** which, as the 5'-benzamido derivative **36**, was transformed into **3**. The 5'-azido compound **5** and **10** on reaction with triphenyl phosphite in aqueous dioxane gave the respective 5'-diphenylphosphoramidate **38** and **39**. Similarly, the 3'-azido compound **22** was converted into 3'-diphenylphosphoramidate **40**.

Appropriately activated uridine may undergo intramolecular transformation to give arabino-, lyxo- and xylo-furanosyl stereoisomers.¹⁻³ Recently, we described synthesis of 5'-azido-(5'-amino-)-5'-deoxyuridine and its furanosyl stereoisomers as well as 5'-N-aminoacyl- and 5'-N-peptidyl-5'-amino-5'-deoxy-5,6-dihydrouridine.⁴ Here, we extend our work on stereoisomeric azido-, amino-, phosphoramido pyrimidine nucleosides, and their intramolecular cyclisations.

Current interest in azido nucleoside chemistry stems from the antiviral activity ^{5,6} of 3'-azido-3'-deoxythymidine (AZT).⁷ However, the increasing resistance of human immunodeficiency virus (HIV) to AZT stimulated syntheses of a number of novel azido nucleosides. For this purpose the silyl (Hilbert– Johnson)^{8,9} coupling of azido furanose with nucleic acid bases, the ring-opening of 1-(3,5-anhydro- β -D-xylofuranosyl)uracil by LiN₃¹⁰ and the nucleophilic substitution of 5'-O-sulfonyluridine by NaN₃,^{11,12} have most frequently been exploited.

Recently, we showed that the intramolecular transformations of 5'-benzamido-5'-deoxy-2',3'-di-O-methylsulfonyluridine 1 when heated under reflux in water gave 1-(5-benzamido-5deoxy- β -D-lyxofuranosyl)uracil⁴ 2 (Scheme 1). We also reported that transformations of 1 on treatment with potassium phthalimide in dioxane stopped at 2,2'-anhydro-1-(5-benzamido-5-deoxy-3-O-methylsulfonyl- β -D-arabinofuranosyl)-

uracil 3. We report here transformations of 2', 3', 5'-tri-Omethylsulfonyluridine¹ 4 on reaction with NaN₃-DMF to yield 2,2'-anhydro-1-(5-azido-5-deoxy-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 5.

The arabinofuranosyl configuration of 5 was confirmed by the characteristic ¹H NMR spectral data, particularly by the coupling constant, $J_{1',2'}$ 5.9 $\pm^{4,13}$ (Table 1). The UV absorbancy of 5 at λ_{max}/nm 245 indicated also its quinone-like structure.

The 2,2'-anhydro compound 5 when heated under reflux in water or dilute hydrochloric acid gave 1-(5-azido-5-deoxy- β -D-lyxofuranosyl)uracil 6, characterized as its 2',3'-O-isopropylidene derivative 7. In contrast to the specific rotation of the 2,2'-anhydro compound 5, $[\alpha]_{D}^{27} - 37 \ddagger (c \ 1, DMF)$, the lyxofuranosyl stereoisomer 6, $[\alpha]_{D}^{24} + 163$ (c 0.86, MeOH), and 7, $[\alpha]_{D}^{22} + 158$ (c 1.15, MeOH), were significantly dextrorotatory.

The ring-opening of 5, on treatment with the ion exchanger Dowex 50 (H^+) ,² afforded 1-(5-azido-5-deoxy-3-*O*-methylsulfonyl- β -D-arabinofuranosyl)uracil 8. The latter, on mesylation, gave the respective 2'-*O*-mesyl derivative 9. Furthermore, treatment of 5 with aqueous NaOH gave 1-(5-azido-5-deoxy-2,3-epoxy- β -D-lyxofuranosyl)uracil 10. Similarly, treatment of 5 with NaOMe-MeOH afforded 1-(5-azido-5-deoxy-2,3epoxy- β -D-lyxofuranosyl)-2-*O*-methyluracil 11 through an $^{-}$ OMe attack at the C-2 position of 5, followed by the C(2)-O-C(2') ring-opening and $^{-}$ O-C(2'), C(3') cyclisation.¹⁴ As expected, the anomeric H-C(1') in the ¹H NMR spectra of the 2',3'-oxiranes 10 and 11 exhibited the singlet-like signals at $\delta_{\rm H}$ 6.1.

In analogy to the stereochemically controlled ring-opening of the azido compound 5 to give 8 (Scheme 1, pathway vi), the benzamido derivative 3 afforded 1-(5-benzamido-5-deoxy-3-Omethylsulfonyl- β -D-arabinofuranosyl)uracil 12. The combined hydrogenolysis-benzoylation of the azido compounds 5 and 10 over Pd-black in the presence of benzoic acid anhydride smoothly proceeded to give the 5'-benzamido 2,2'-anhydro compound 3 (84.3%) and 1-(5-benzamido-5-deoxy-2,3-epoxy- β -D-lyxofuranosyl)uracil 14 (97%), respectively. It should be pointed out that hydrogenolysis of the 5'-azido compound 10, followed by the benzoylation of the resulting 1-(5-amino-5deoxy-2,3-epoxy- β -D-lyxofuranosyl)uracil 13 afforded the 5'benzamido compound 14 in lower yield than that obtained from the above described hydrogenolysis-benzoylation of the 5'azido compound 10.

For the reason we shall deal with below, treatment of the 2',3'-oxirane 10 with ammonia in ethanol¹⁵ generated 1-(3-amino-5-azido-3,5-dideoxy- β -D-arabinofuranosyl)uracil 15 and 1-(2-amino-5-azido-2,5-dideoxy- β -D-xylofuranosyl)uracil 16 in a 2:1 ratio (established by their ¹H NMR spectra). These stereoisomers were separated as 1-(5-azido-3-benzamido-3,5-dideoxy- β -D-arabinofuranosyl)uracil 17, R_f 0.19 (47%), and 1-(5-azido-2-benzamido-2,5-dideoxy- β -D-xylofuranosyl)uracil 18, R_f 0.15 (36%), characterized also as the 2'-O-acetyl 19 and 3'-O-acetyl derivative 20, respectively (Scheme 2).

The 5'-benzamido-2',3'-oxirane 14 on reaction with NaN₃-DMF gave 1-(3-azido-5-benzamido-3,5-dideoxy- β -D-arabinofuranosyl)uracil 21 (78%), characterized as its 2'-O-acetyl derivative 22. Comparing the ¹H NMR spectra of the 2'hydroxy compound 21 with that of the 2'-acetoxy derivative 22,

 $^{^{\}dagger}J$ Values in Hz and $[\alpha]_D$ values in units of 10^{-1} deg cm 2 g $^{-1}$ throughout.

Scheme 1 Reagents and conditions: i, H_2O , heat; ii, Pht-K-dioxane; iii, NaN_3-DMF ; iv, H_2O or $HCl-H_2O$; v, $Me_2CO-CuSO_4-H_2SO_4$; vi, $Dowex 50(H^+)-Me_2CO-H_2O$; vii, MsCl-py; viii, $NaOH-H_2O$; ix, NaOMe-MeOH; x, $[H_2]-Pd$ black- $Bz_2O-MeOH$; xi, $[H_2]-Pd$ black-EtOH; xii, Bz_2O-py

Scheme 2 Reagents and conditions: i, NH₃-EtOH; ii, Bz₂O-py; iii, Ac₂O-py; iv, NaN₃-DMF; v, [H₂]-Pd black-EtOH; vi, [H₂]-Pd black-Bz₂O-MeOH

Scheme 3 Reagents and conditions: i, NaOH-H₂O; ii, NaN₃-DMF; iii, [H₂]-Pd black-EtOH; iv, Bz₂O-py

the latter showed the expected downfield resonances for the 2'-H (0.86 ppm) and 3'-H (0.43 ppm) (Table 1). Moreover, the ¹³C NMR spectrum of **22** (Table 2) confirmed the so-called β -acetyl effect ¹⁶ by exhibiting a downfield C-2' shift (1.2 ppm) and an upfield C-3' shift (2.3 ppm).

Hydrogenolysis of the 3'-azido isomer 22 over Pd-black in

ethanol yielded 1-(2-O-acetyl-3-amino-5-benzamido-3,5-dideoxy- β -D-arabinofuranosyl)uracil **23** which, on benzoylation, yielded the 3',5'-dibenzamido compound **24** (81%). The latter was prepared by hydrogenolysis-benzoylation of the azido compound **22** in 92% yield.

Treatment of $1-(5-O-methylsulfonyl-2,3-epoxy-\beta-D-lyxo-$

Table 1	¹ H NMR chemical shifts ($\delta_{\rm H}$), and coupling constants, given in parentheses, for the 1-(furanos-1'-yl)uracil isomers ^{<i>a,b,c,d,e,f,g,h</i>}
---------	--

Compound	Solvent*	6-H d	1′-H d	5-H d	2′-H	3′-Н	4′-H	5'-H _A dd	5'-H ₂ 5'-H _B dd	
			Data	for arabin	io-, lyxo- and x	ylo-isomers				
6	Α	7.83	6.07	5.55	4.40dd	4.08 -	3.91	3.	57d	
		(8.2)	(6.5)	(8.2)	(6.5, 4.7)			(6	5.2)	
7'	В	7.49	5.85	5.73	4.93 –	4.72	3.93sext	3.65d		
		(8.2)	(3.2)	(8.2)			(3.2, 6.2)	(6	.2)	
8	Α	7.52	6.06	5.60	4.88dd	4.43dd	4.29-4.07	3.68d (5.6)		
		(8.2)	(4.1)	(8.2)	(4.1, 3.2)	(3.2, 4.7)				
9	С	7.55	6.25	5.76	5.48dd	5.31dd	4.34sext	3.84	-3.76	
		(8.2)	(5.0)	(8.2)	(5.0, 3.2)	(3.2, 5.3)	(5.3, 4.1)			
1 2	Α	7.70	6.48	5.53	5.02t	4.44 –	4.18	3.82-3.64		
		(8.2)	(3.8)	(8.2)	(2.1)					
19	D	7.88	6.27	5.75	5.67dd	4.82 -	4.60	3.78-3.66		
		(8.2)	(5.6)	(8.2)	(5.6, 4.1)					
20 ^j	D	7.76	6.46	5.71	5.73-5.62	5.80sext	4.38-4.21	3.85	-3.74	
		(8.2)	(5.3)	(8.2)		(4.1, 7.3)				
21	D	7.77	6.11	5.55	4.49	4.29	_	3.	81	
		(8.2)	(4.7)	(8.2)	br s					
22	D	7.77	6.21	5.63	5.35dd	4.48dd	4.14dd	3.97	-3.84	
		(8.2)	(4.9)	(8.2)	(4.9, 3.5)	(3.5, 5.6)	(5.6, 10.4)			
24	Α	7.74	6.32	5.61	5.46dd	4.52sext	4.33-4.14	3.80-3.68		
		(8.2)	(4.9)	(8.2)	(4.9, 3.5)	(3.5, 6.7)				
40 ^k	D	7.73	6.29	5.59	5.41t	4.38	4.02	3.86-3.65		
		(8.2)	(4.7)	(8.2)	(4.7)					
		· · ·	. ,	• •	r imino nucleos	sides				
32	Α	7.41	5.83	5.60	4.91d	4.56 –	4.49	3.47	3.21	
5-		(7.6)	(6.7)	(7.6)	(2.3)			(14.2, 3.1)	(14.2, 1.8)	
33	Α	7.39	6.16	5.61	5.36dd	5.19d	4.73-4.58	3.52	3.26	
55		(7.6)	(6.7)	(7.6)	(6.7, 1.8)	(1.8)		(16.2, 2.9)	(16.2, 1.8)	
34	Α	7.95	6.39	6.08	5.49d	4.85	4.77d	4.99	3.22	
24		(7.6)	(7.3)	(7.6)	(7.3)	s br	(2.6)	(14.6, 2.6)	(14.6, 1.8)	
35	С	7.28	6.15	5.68	5.84dd	5.44d	4.81	4.06	3.47	
	÷	(7.6)	(6.8)	(7.6)	(6.8, 1.5)	(1.5)	s br	(14.5, 2.9)	(14.5, 1.8)	
37'	Α	7.94	6.64	5.89	5.71 -	5.68	4.97	4.79	3.50	
51	1	(7.6)	(6.5)	(7.5)	5.71	5.00	s br	(14.5, 2.9)	(14.5, 1.8)	

^a Me(Ms) of (8, 9, 12, 32–37) at 3.43–3.13 (s).^b N- and O-Benzoyl of (12, 19–22, 24, 35, 37, 40) at 8.01–7.71 and 7.64–7.28.^c H–N(3) of (6, 8, 9, 12, 19–22, 24, 40) at 11.21–9.41 (br s), D₂O-exchangeable.^d 5'-NH of (19, 21, 22, 24, 32, 33, 35, 40) at 8.56–6.62, D₂O-exchangeable.^e 3'-NH of (19, 24, 40) at 8.85–5.82, D₂O-exchangeable.^f 2'-OH and 3'-OH of (6, 8, 12, 21, 32) at 6.62–4.07, D₂O-exchangeable.^g Me(Ac) of (19, 20, 22, 24, 33, 34, 40) at 2.29–1.83 (s).^b Two dimensional spectra of (34, 35, 37) on JEOL Varian Gemini-300 instrument. ⁱ (Me)₂ at 1.47 and 1.32. 2'-NH at 8.41–8.34, D₂O-exchangeable.^k NPO(OPh)₂ at 7.46–7.06.^k NCOPh at 7.52–6.70.

* A = $[{}^{2}H_{6}]$ -DMSO, B = $[{}^{2}HCl_{3}, C = C^{2}H_{3}CN, D = [{}^{2}H_{6}]$ acetone.

furanosyl)uracil¹⁷ **25** with NaN₃ at 100 °C afforded 2',5'anhydro-1-(3-azido-3-deoxy- β -D-arabinofuranosyl)uracil **26** (54.5%), most probably *via* the intermediacy of [A] (Scheme 3). This reaction (depicted by dotted lines) led also to 1-(3,5diazido-3,5-dideoxy- β -D-arabinofuranosyl)uracil **27** (20.6%), R_f 0.43, and in lesser extent to 1-(2,5-diazido-2,5-dideoxy- β -Dxylofuranosyl)uracil **28**, R_f 0.42. The hydrogenolysis of **26** over Pd-black-EtOH gave the corresponding 3'-amino compound **29**, characterized as its 3'-benzamido derivative **30**. The ¹³C NMR spectra of the 2',5'-oxolanes **26**, **29** and **30** exhibited C-5' downfield shifts (11 ppm) as recorded in the 2,5'-anhydro series.¹⁸

The hydrogenolysis of the 5'-azido-2,2'-anhydro compound 5 over Pd-black in ethanol afforded 2,2'-anhydro-1-(5-amino-5-deoxy-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 31 which spontaneously rearranged into the hitherto unknown 2,5'-imino-1-(3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 32 (94%) (Scheme 4).

While the imino compound 32 on reaction with acetic anhydride yielded 2,5'-imino-1-(2-O-acetyl-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 33 (79.6%), on reaction with acetyl chloride it gave 5'-N-acetyl-2,5'-imino-1-(2-O-acetyl-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 34 (85%). The benzoylation of 32 with benzoic acid anhydride afforded 2,5'imino-1-(2-O-benzoyl-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 35 (53.7%) and 5'-benzamido-2,2'-anhydro compound 3 (33.7%) (Scheme 1). The latter was unexpectedly formed by an intamolecular $^{-}O-C(2')$ attack at the C-2 position of the 5'-benzamido-2,5'-imino intermediate 36. The structure of the 2'-O-benzoyl derivative 35 was supported by its facile hydrolysis into the hydroxy compound 32.

It is worth noting that compound **32** on reaction with benzoyl chloride afforded the 2,2'-anhydro compound **3** (74%) which then partly cleaved to give up 5'-benzamido-3'-O-mesyl compound **12** (Scheme 1). Such a rearrangement was prevented when the β -oriented 2'-hydroxy group was blocked as in 5'-N-benzoyl-2,5'-imino-1-(2-O-benzoyl-3-O-methylsulfonyl- β -D-arabino-furanosyl)uracil **37**. The latter was easily prepared from the 2'-O-benzoyl derivative **35** on reaction with benzoyl chloride. The aromatic protons of the N,O-dibenzoyl derivative **37**, were clearly assigned by two-dimensional (COSY) ¹H NMR spectrum showing the O-benzoyl signals at $\delta_{\rm H}$ 7.96–7.93, 7.81–7.63, 7.61–7.56 and N-benzoyl signals at $\delta_{\rm H}$ 7.52–7.50, 7.25–7.21, 6.74–6.70 for meta-(2H), para-(1H) and ortho-(2H), respectively.

Phosphorylation of the azido nucleosides facilitated the regioselective phosphorodiamido bond formation. Thus, the 5'-azido compounds **5** and **10** on reaction with triphenyl phosphite in dioxane-water^{19,20} afforded 2,2'-anhydro-1-(5-deoxy-5-diphenylphosphoramido- β -D-arabinofuranosyl)-

uracil **38** (89.3%) and 1-(5-deoxy-5-diphenylphosphoramido-2,3-epoxy- β -D-lyxofuranosyl)uracil **39** (78%); respectively

Table 2 ¹³C NMR spectroscopic data [$\delta_{\rm C}$ (ppm)] for the 1-(furanos-1'-yl)uracil isomers^{*a,b,c,d,e*}

Compound	Solvent*	C-4 (s)	C-2 (s)	C-6 (d)	C-5 (d)	C-1' (d)	C-4' (d)	C-2′ (d)	C-3' (d)	C-5' (t)
			Arabino	, lyxo- and	d xylo-isor	ners				
6	Α	162.9	150.5	142.2	99.8	83.2	77.3	70.3	69.2	49.9
7	D	163.1	150.3	142.0	100.3	84.8	80.1	78.9	77.7	49.7
8	С	164.7	151.6	143.2	101.9	86.1	84.4	74.6	80.4	51.8
9	С	164.1	151.2	142.3	102.9	84.5	81.3	80.0	80.6	51.2
12	Α	163.3	150.5	142.6	100.3	85.7	84.7	72.9	80.8	40.9
1 9	D	163.5	151.5	140.9	103.4	87.7	79.1	76.4	61.0	50.9
20	D	163.3	150.9	141.9	102.1	84.1	80.4	57.4	76.9	52.7
21	D	163.4	150.8	142.7	100.7	85.7	79.9	74.9	68.1	41.6
22	D	163.0	150.3	141.8	101.2	84.2	80.2	76.1	65.8	41.0
24	Α	162.9	150.0	141.7	100.9	83.5	79.7	75.9	56.7	41.2
40	D	163.6	150.3	142.2	101.1	83.8	80.7	77.3	58.1	41.0
			2,2'-4	Anhydro c	ompounds	6				
3	Α	172.1	159.8	137.4	109.7	90.5	84.1	86.7	82.1	40.9
3 5	Α	171.1	159.7	136.8	109.2	90.1	83.9	86.3	81.9	51.2
38	Α	170.8	159.3	136.8	109.0	89.7	84.6	86.1	81.0	42.2
				Oxiran	es					
10	Α	162.6	149.9	140.7	101.8	80.6	75.4	55.4	55.1	49.7
119	D	169.5	155.8	138.7	108.4	83.4	76.8	56.1	55.9	50.5
14	Ā	163.3	150.6	141.3	101.9	81.2	75.6	56.1	55.9	39.2
39	A	163.0	150.7	141.3	101.9	81.0	76.7	56.3	55.5	40.7
				Oxolar	nes					
26	Α	163.2	150.5	140.6	100.6	89.1	79.6	75.6	65.2	72.6
29	Α	163.4	150.6	141.1	100.3	89.8	81.8	77.6	59.6	72.8
30	Α	163.4	150.6	140.9	100.5	89.4	79.5	75.9	58.2	72.2
			Iı	mino nucle	eosides					
32	Α	169.9	158.7	143.7	107.2	93.8	87.8	77.7	81.4	47.7
33	A	169.2	158.1	143.1	107.4	91.7	83.7	78.1	81.1	47.3
34	В	169.4	152.1	143.9	111.2	93.9	82.4	79.2	82.1	45.7
35	D	170.1	160.3	143.9	108.7	93.9	85.4	79.2	83.4	48.4
37	Ā	171.9	153.6	145.3	108.9	92.9	83.2	79.7	82.2	47.5

^a CO(amide) and CO(ester) of (**3,12,14,19–22, 24, 30, 33, 35, 37, 40**) at 171.1–166.2. ^b Aromatic C-atoms of (**3, 12, 14, 19–22, 24, 30, 35, 37, 40**) at 135.1–127.3. ^c Me(Ms) of (**3,5,8,9,12,32–35,37, 38**) at 38.9–37.6 (q). ^d Me(OAc) of (**19, 20, 22, 24, 33, 34, 40**) at 20.8–19.5 (q) and Me(NAc) of **34** at 23.9 (q). ^e PO(OPh)₂ of (**38–40**) at 150.6 and 129.9–120.2. ^f O–C–O at 113.2 (s), Me₂ at 25.0 (q) and 23.6 (q). ^g Me–O–C(2) at 55.1 (q). * A = [²H₆]-DMSO, B = C²HCl₃, C = C²H₃CN, D = [²H₆]acetone.

Scheme 4 Reagents and conditions: i, [H₂]-Pd black-EtOH; ii, Ac₂O-py; iii, AcCl-py; iv, Bz₂O-py; v, NaOH-H₂O; vi, BzCl-py

(Scheme 5); both exhibited characteristic ¹³C NMR spectra²¹ (Table 2).

The 2-O-acetyl-3-azido-5'-benzamido-arabinofuranosylcompound **22** was analogously converted into 1-(2-O-acetyl-3benzamido-3,5-dideoxy-3-diphenylphosphoramido- β -D-arabinofuranosyl)uracil **40** in 83% yield.

The ¹H and ¹³C NMR spectral characteristics of all the reported compounds (Tables 1 and 2), together with their optical rotations (see Experimental section), IR (in particular, for the azido compounds with characteristic $v_{max}/cm^{-1} \sim 2100$), UV (in particular for the 2,5'- and 2,2'-anhydro as well as 2-OMe compound with $\lambda_{max}/nm \sim 245$) and elemental analyses agreed with the proposed structures presented in this paper.

Experimental

M.p.s, uncorrected, were determined on a Kofler hot-stage apparatus. IR spectra were obtained for KBr pellets on a Perkin-Elmer 782 spectrophotometer. UV spectra were taken for solutions in ethanol on a Perkin-Elmer double-beam spectrophotometer model 124. ¹H and ¹³C NMR spectra were recorded on a JEOL FX90Q and JEOL FX 100Q spectrometers with tetramethylsilane as the internal standard. Multiplicities s, d, t and q refer to off-resonances decoupled spectra. Optical rotations were measured in methanol, unless otherwise stated, on a Zeiss-Winkel 179707 apparatus. The silica gel (Merck HF₂₅₄, type 60) for TLC was activated at 110 °C for 60 min. $R_{\rm f}$ Values of the products were determined by developments in CH₂Cl₂-MeOH, 10:1 and located by UV illumination and a ninhydrin spray. Removal of the solvents under reduced pressure. DMF (dimethylformamide) and pyridine were dried and distilled over CaH₂ and stored over molecular sieves (4 Å). Mass spectra were recorded on a SHIMADZU GC-MS QP-1000 spectrometer; electron impact, ionizing voltage 70 eV.

General Procedure for the Hydrogenolysis-Benzoylation of the Azides 5, 10 and 22.—To a solution of the azide (0.34-1.31 mmol) in methanol $(7-35 \text{ cm}^3)$ Pd-black (7-28 mg) and benzoic acid anhydride (0.43-1.71 mmol) were added. The suspension was stirred in a H₂ atmosphere at 0.35 MPa at room temperature for 24 h. The catalyst was filtered off and the filtrate evaporated to dryness. The residue was triturated with diethyl ether and recrystallized from methanol to give compounds 3, 14 and 24.

2,2'-Anhydro-1-(5-benzamido-5-deoxy-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 3. From 5, 84.3%; R_f 0.17; m.p. 194–200 °C; identical (mixed m.p., NMR and IR spectra) with an authentic specimen (ref. 4).

1-(5-Benzamido-5-deoxy-2,3-epoxy-β-D-lyxofuranosyl)uracil 14. From 10: 97%; R_f 0.36; m.p. 186–188 °C; identical (mixed m.p., NMR and IR spectra) with an authentic specimen (ref. 4).

1-(2-O-Acetyl-3,5-dibenzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil **24**. From **22**: 92%; R_f 0.39; m.p. 264–265 °C (Found: C, 60.8; H, 4.75; N, 11.25. $C_{25}H_{24}N_4O_7$ requires C, 60.95; H, 4.9; N, 11.4%); $[\alpha]_D^{22}$ +46 (c 1 in DMF); λ_{max}/nm 227 (log ε 4.22); λ_{infl}/nm 262 (log ε 3.98); λ_{min}/nm 246 (log ε 4.06); v_{max}/cm^{-1} 3271, 3063, 1750, 1717, 1706, 1690, 1639, 1534, 1268, 1226, 1218, 1210, 1114, 822, 803, 715 and 694.

General Procedure for the Azidolysis of the Mesylate 4^1 and Oxiranes $14.^4 25.^{17}$ —To a solution of mesylate or oxirane (1 mmol) in DMF (40 cm³) sodium azide (2 mmol) was added. The mixture was stirred at 100 °C for 1 h for 4, 2 h for 25 or for 1 day for 14 and then cooled. A precipitate was filtered off and the filtrate evaporated to dryness. The residue was crystallized from water as in the case of the azide 5 and purified by TLC $[CH_2Cl_2-MeOH (10:0.5), two developments]$ as in the case of the azido compounds 21 and 26.

2,2'-Anhydro-1-(5-azido-5-deoxy-3-O-methylsulfonyl-β-Darabinofuranosyl)uracil **5**. From **4**: 93%; R_f 0.20; m.p. 155– 156 °C (from MeOH) (Found: C, 36.2; H, 3.6; N, 21.25. C₁₀-H₁₁N₆O₅S requires C, 36.45; H, 3.35; N, 21.25%); $[\alpha]_D^{27}$ -37.5 (*c* 1 in DMF); λ_{max} /nm 245 (log ε 3.99); v_{max} /cm⁻¹ 2154, 2113, 1664, 1637, 1613, 1528, 1495, 1362, 1284, 1179, 1094, 961 and 829; $\delta_H([^2H_6]$ -DMSO) 7.85 (1 H, d, J 7.6, 6-H), 6.44 (1 H, d, J 5.9, 1'-H), 5.89 (1 H, d, J 7.6, 5-H), 5.64 (1 H, d, J 5.9, 2'-H), 5.38 (1 H, m, 3'-H), 4.64–4.49 (1 H, m, 4'-H), 3.60 (1 H, dd, J 13.5 and 4.4, 5'-H_A), 3.37 (3 H, s, MsMe), 3.36 (1 H, dd, J 13.5 and 6.7, 5'-H_B).

1-(3-Azido-5-benzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil **21**. From **14**: 78%; R_f 0.31; m.p. 115–117 °C (from acetone–hexane) (Found: C, 51.35; H, 4.7; N, 22.35. $C_{16}H_{16}$ -N₆O₅ requires C, 51.6; H, 4.45; N, 22.55%); $[\alpha]_D^{14}$ –117 (*c* 1.02 in MeOH); λ_{max} /nm 218.5 and 260 (log ε 4.13 and 4.03), λ_{min} /nm 246 (log ε 3.99); ν_{max} /cm⁻¹ 3314br, 3104, 3054, 2924, 2109, 1719, 1684br, 1634infl, 1534, 1459, 1270, 1069, 797, 707 and 688.

1-(2,5-Anhydro-3-azido-3-deoxy-β-D-arabinofuranosyl)uracil **26.** From **25**: 54.5%; $R_{\rm f}$ 0.45; m.p. 227–229 °C (from MeOH) (Found: C, 43.2; H, 3.85; N, 27.65. C₉H₉N₅O₄ requires C, 43.05; H, 3.6; N, 27.9%); $[\alpha]_{\rm D}^{28}$ + 238 (c 0.5 in MeOH); $\lambda_{\rm max}/{\rm nm}$ 264.5 (log ε 3.89); $\nu_{\rm max}/{\rm cm}^{-1}$ 3126, 3011, 2892, 2110, 1714, 1689, 1674, 1468, 1397, 1267, 1058 and 1016; $\delta_{\rm H}([^2{\rm H_6}]-$ DMSO) 11.27 (1 H, br s, 3-NH), 7.78 (1 H, d, J 8.2, 6-H), 5.92 (1 H, s, 1'-H), 5.59 (1 H, d, J 8.2, 5-H), 4.82 (1 H, s, 2'-H), 4.65 (1 H, d, J 2.6, 3'-H), 4.52 (1 H, q, J 2.6 and 0.9, 4'-H), 4.07 (1 H, d, J 12.9, 5'-H_A) and 3.97 (1 H, d, J 12.9, 5'-H_B).

1-(5-Azido-5-deoxy-β-D-lyxofuranosyl)uracil **6**.—(a) A solution of the 2,2'-anhydro compound **5** (100 mg, 0.3 mmol) in water (4 cm³) was heated under reflux for 3 h and then evaporated to dryness. The residue crystallized from ethyl acetate to give the lyxofuranosyl isomer **6** (76 mg, 94%); $R_{\rm f}$ 0.18; m.p. 139–141 °C (Found: C, 40.25; H, 4.4; N, 26.0. C₉H₁₁N₅O₅ requires C, 40.15; H, 4.1; N, 26.0%); $[\alpha]_D^{24}$ + 163 (c 0.86 in MeOH); $\lambda_{\rm max}/{\rm nm}$ 259 (log ε 3.93); $v_{\rm max}/{\rm cm^{-1}}$ 3423, 3232, 3110, 2110, 1702, 1677, 1475, 1276, 1110, 1064 and 813.

(b) A solution of compound 5 (200 mg, 0.61 mmol) in 0.1 mol dm^{-3} aq. HCl (5 cm³) was heated under reflux for 1 h and then evaporated to dryness. The residue was purified by preparative TLC [CH₂Cl₂-MeOH (10:0.6), two developments] to give 6 (145 mg, 90%), m.p. 138–140 °C (from ethyl acetate); identical (mixed m.p., NMR and IR spectra) with those obtained under (a).

1-(5-Azido-5-deoxy-2,3-O-isopropylidene-β-D-lyxofuranosyl)uracil 7.—A suspension of the lyxofuranosyl compound 6 (70 mg, 0.26 mmol) and dry cuprous sulfate (126 mg, 0.77 mmol) in acetone (4 cm³) and sulfuric acid (2.4×10^{-3} cm³) was heated at 37 °C for 45 h. The resulting precipitate was filtered off (Celite column) and the filtrate treated with dry calcium hydroxide (62 mg, 0.84 mmol). This mixture was stirred at room temperature for 1 h after which the resulting precipitate was filtered off and the filtrate evaporated to dryness. The residue was subjected to preparative TLC [CH₂Cl₂-MeOH (10:0.6), two developments] to give the acetonide 7 (74 mg, 92.5%); $R_f 0.39$; m.p. 112–115 °C (from MeOH) (Found: C, 46.5; H, 5.15; N, 22.6. C₁₂H₁₅N₅O₅ requires C, 46.6; H, 4.9; N, 22.65%; $[\alpha]_D^{22} + 158$ (c 1.15 in MeOH); λ_{max}/nm 260 (log ε 3.99); v_{max}/cm^{-1} 3549, 3474, 3429, 2103, 1714infl, 1694br, 1625, 1458, 1386, 1285, 1210, 1112 and 880.

1-(5-Azido-5-deoxy-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **8**—To a solution of compound **5** (200 mg, 0.61 mmol) in acetone-water (1:1; 50 cm³) the ion exchanger Dowex 50 (H⁺) (640 mg) was added. The mixture was stirred at room temperature for 72 h and then filtered. The filtrate was evaporated to dryness and the residue crystallized from dichloromethane-diethyl ether-hexane to give the ring-opened product **8** (174 mg, 82.5%); R_f 0.3; m.p. 83-84 °C (Found: C, 34.4; H, 3.95; N, 19.9. $C_{10}H_{13}N_5O_7S$ requires C, 34.6; H, 3.75; N, 20.15%); $[\alpha]_D^{23} + 215$ (c 0.91 in MeOH); λ_{max}/nm 258 (log ε 4.08); ν_{max}/cm^{-1} 3480infl, 3247br, 3032, 2111, 1694br, 1630infl, 1469, 1360, 1281, 1177, 966, 843 and 812.

1-(5-Azido-5-deoxy-2,3-di-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **9**.—A solution of the arabinofuranosyluracil **8** (160 mg, 0.46 mmol) in pyridine (5 cm³) was treated with methanesulfonyl chloride (75.5 mg, 0.66 mmol) at room temperature for 24 h. The solvent was coevaporated with toluene and the residue washed with ice-water. It was then subjected to preparative TLC [CH₂Cl₂-MeOH (10:0.6), two developments] to give the 2'-O-mesyl compound **9** (147 mg, 75%); R_f 0.42; m.p. 80–82 °C (from dichloromethane-diethyl ether-hexane) (Found: C, 31.25; H, 3.7; N, 16.6. C₁₁H₁₅N₅O₉S₂ requires C, 31.05; H, 3.55; N, 16.45%); $[\alpha]_D^{26}$ +103 (c 0.75 in MeOH); λ_{max}/nm 253.5 (log ε 3.98); v_{max}/cm^{-1} 3440br, 3214, 3032, 2113, 1695br, 1632, 1463, 1365, 1288, 1179, 968, 879 and 821.

1-(5-Azido-5-deoxy-2,3-epoxy-β-D-lyxofuranosyl)uracil **10**.— A solution of compound **5** (300 mg, 0.91 mmol) in 0.48 mol dm⁻³ NaOH (3.79 cm³, 1.82 mmol) was kept at room temperature for 30 min. The mixture was neutralized with 0.65 mol dm⁻³ aq. HCl. The crystalline precipitate was filtered off and washed with methanol. It afforded the oxirane **10** (210 mg, 92%); R_f 0.42; m.p. 186–188 °C (from MeOH) (Found: C, 43.1; H, 3.75; N, 28.15. C₉H₉N₅O₄ requires C, 43.05; H, 3.6; N, 27.9%); $[\alpha]_D^{24}$ + 116 (*c* 0.56 in MeOH); λ_{max}/nm 259 (log ε 3.93); ν_{max}/cm^{-1} 3125, 3003, 2807, 2131, 2092, 1695, 1682, 1469, 1388, 1260, 1120, 1083, 851, 828 and 800; $\delta_H([^2H_6]$ -DMSO) 11.12 (1 H, br s, 3-NH), 7.64 (1 H, d, J 8.2, 6-H), 6.08 (1 H, s, 1'-H), 5.64 (1 H, d, J 8.2, 5-H), 4.29– 3.99 (3 H, m, 2'-, 3'- and 4'-H) and 3.60 (2 H, d, J 5.9, 5'-H₂).

1-(5-Azido-5-deoxy-2,3-epoxy-β-D-lyxofuranosyl)-2-O-methyluracil 11.--A solution of compound 5 (200 mg, 0.61 mmol) in methanolic 0.35 mol dm⁻³ sodium methoxide (3.5 cm³, 1.22 mmol) was set aside at room temperature for 30 min. The solution was neutralized with 0.65 dm⁻³ aq. HCl to give a crystalline product, identified as the oxirane 10 (49 mg, 32%), m.p. 185-188 °C; identical (mixed m.p., NMR and IR spectra) with an authentic specimen. The mother liquor was evaporated to dryness and the oily residue purified by preparation TLC [CH₂Cl₂-MeOH (10:0.6), two developments] to give the 2-Omethyloxirane 11 (108 mg, 66.7%); Rf 0.40 (Found: C, 45.4; H, 4.45; N, 26.3. C₁₀H₁₁N₅O₄ requires C, 45.25; H, 4.2; N, 26.4%); $[\alpha]_D^{24}$ +51 (c 0.36 in MeOH); λ_{max}/nm 242.5 (log ε 4.14); v_{max}/cm^{-1} 2103, 1650, 1524, 1454, 1384, 1240, 1101 and 828; $\delta_{\rm H}([^{2}{\rm H}_{6}]-{\rm DMSO})$ 7.77 (1 H, d, J 7.9, 6-H), 6.18 (1 H, s, 1'-H), 5.84 (1 H, d, J 7.9, 5-H), 4.43-4.07 (3 H, m, 2'-, 3'- and 4'-H), 3.96 (3 H, s, 2-Me), 3.70 (2 H, d, J 5.9, 5'-H₂).

1-(5-Benzamido-5-deoxy-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil 12.—To a solution of the 2,2'-anhydro-5'benzamido compound 3 (100 mg, 0.25 mmol) in acetone-water 1:1 (20 cm³) the ion exchanger Dowex 50 (H⁺) (260 mg) was added. This suspension was stirred at room temperature for 72 h and filtered. The filtrate was evaporated to dryness and the residue crystallized from methanol-diethyl ether to give the ring-opened product 12 (89 mg, 84%); R_f 0.27; m.p. 174-176 °C (Found: C, 48.05; H, 4.6; N, 10.0. C₁₇H₁₉N₃O₈S requires C, 48.0; H, 4.5; N, 9.9%); $[\alpha]_D^{28}$ +161 (c 1.09 in MeOH); λ_{max}/nm 219 and 260 (log ε 4.10 and 4.00); λ_{min}/nm 244 (log ε 3.96); ν_{max}/cm^{-1} 3394, 3313, 3107, 3019, 1722, 1695, 1630, 1542, 1454, 1354, 1280, 1180, 965 and 847.

1-(3-Amino-5-azido-3,5-dideoxy-β-D-arabinofuranosyl)uracil 15 and 1-(2-Amino-5-azido-2,5-dideoxy-β-D-xylofuranosyl)uracil 16.—A solution of the oxirane 10 (200 mg, 0.79 mmol) in 15% ethanolic ammonia (7 cm³) was heated in a pressure vessel at 130 °C for 5 h and then evaporated to dryness. It afforded the arabinofuranosyl 15, R_f 0.05, and xylofuranosyl isomer 16, R_f 0.04, in a ratio 2:1 (established by ¹H NMR spectra), used for further experiments.

General Procedure for the Hydrogenolysis of Azides 10, 22, 26 and 5.—To a solution of the azides (0.4 mmol) in ethanol (30 cm³) Pd-black (9 mg) was added and stirred in a H₂ atmosphere at 0.35 MPa at room temperature for 18 h. The catalyst was filtered off and the filtrate evaporated to dryness as in the case of the amino compounds 13 and 23 (used for further experiment). The residue was recrystallized from methanol as in the case of the amino compound 29 and rearranged imine 32.

1-(5-Amino-5-deoxy-2,3-epoxy-β-D-lyxofuranosyl)uracil 13. From 10: 99%; R_f 0.03.

1-(2-O-Acetyl-3-amino-5-benzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil **23**. From **22**: 98%; R_f 0.13.

1-(3-*Amino*-2,5-*anhydro*-3-*deoxy*-β-D-*arabinofuranosyl*)*uracil* **29**. From **26**: 82%; *R*_f 0.09; m.p. 244–246 °C (Found: C, 47.75; H, 5.15; N, 18.4. C₉H₁₁N₃O₄ requires C, 48.0; H, 4.9; N, 18.65%); $[\alpha]_{D}^{25}$ + 337 (*c* 0.23 in MeOH); λ_{max}/nm 264 (log ε 3.93); ν_{max}/cm^{-1} 3388, 3318, 3103, 3023, 2993, 1772, 1708, 1683infl, 1665, 1650infl, 1601, 1463, 1414, 1382, 1272, 1262, 1095 and 963; $\delta_{H}([^{2}H_{6}]$ -DMSO) 7.91 (1 H, d, *J* 8.2, 6-H), 6.25 (1 H, s, 1'-H), 5.69 (1 H, d, *J* 8.2, 5-H), 4.51 (1 H, s, 2'-H), 4.29 (1 H, q, *J* 2.4 and 1.2, 4'-H), 4.04 (2 H, br s, 5'-H₂), 3.77 (1 H, d, *J* 2.4, 3'-H).

2,5'-Imino-1-(2-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **32**. From **5**, 94%; $R_{\rm f}$ 0.05; m.p. 201–203 °C (Found: C, 39.4; H, 4.4; N, 13.65. C₁₀H₁₃N₃O₆S requires C, 39.6; H, 4.3; N, 13.85%); [α]_B³ –73 (c 0.85 in DMF); $\lambda_{\rm max}$ /nm 215.5 (log ε 4.38); $\lambda_{\rm max}$ /cm⁻¹ 3550infl, 3480, 3429, 3240infl, 2899, 1649, 1611, 1532, 1496, 1453, 1342, 1178, 997 and 972.

General Procedure for the Benzoylation of Amines 13, 15 + 16, 23, 29 and the Imine 32.—To a solution of amine (0.4 mmol) or imine (0.16 mmol) in pyridine (5 cm³) benzoic acid anhydride (0.44 mmol) was added and the mixture kept at room temperature (45 min in the case of the amino compounds and 6 h in the case of the imino compound). The solvent was coevaporated with toluene. The residue was washed with diethyl ether and subjected to preparative TLC [CH₂Cl₂-MeOH (10:0.5), three developments].

1-(5-Benzamido-3-deoxy-2,3-epoxy-β-D-lyxofuranosyl)uracil 14. From 13: 92%; m.p. 186–188 °C; identical (mixed m.p., NMR and IR spectra) with a specimen obtained by the hydrogenolysis-benzoylation of the azido compound 10.

1-(5-Azido-3-benzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil 17 and 1-(5-Azido-2-benzamido-2,5-dideoxy-β-D-xylofuranosyl)uracil 18. From a mixture of the amino compound 15 and 16: 47% of 17; R_f 0.19, and 36% of 18; R_f 0.15; both used for further experiments.

1-(2-O-Acetyl-3,5-dibenzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil 24. From 23: 81%; R_f 0.39; m.p. 264-265 °C (from MeOH); identical (mixed m.p., NMR and IR spectra) with a specimen obtained by the hydrogenolysis-benzoylation of the azido compound 22.

1-(2,5-Anhydro-3-benzamido-3-deoxy-β-D-arabinofuranosyl)uracil **30**. From **29**: 76%; R_f 0.26; m.p. 263–265 °C (from MeOH) (Found: C, 58.5; H, 4.45; N, 12.95. C₁₆H₁₅N₃O₅ requires C, 58.35; H, 4.6; N, 12.75%); $[\alpha]_{D}^{25} + 92$ (c 0.45 in MeOH); λ_{max}/nm 220 and 261.5 (log ε 4.16 and 4.12); λ_{min}/nm 245 (log ε 4.06); v_{max}/cm^{-1} 3312, 3262, 3012, 2957, 1707, 1689, 1685, 1632, 1527, 1456, 1280, 1262, 1039, 921 and 859; $\delta_{\rm H^-}([^2{\rm H_6}]-{\rm DMSO})$ 11.37 (1 H, br s, 3-NH), 9.07–9.03 (1 H, m, 3'-NH), 7.98–7.87 and 7.58–7.41 (2 + 3 H, 2 × m, ArH), 7.86 (1 H, d, J 7.9, 6-H), 5.99 (1 H, s, 1'-H), 5.61 (1 H, d, J 7.9, 5-H), 4.91 (1 H, s, 2'-H), 4.70 (1 H, d, J 2.6, 3'-H), 4.34 (1 H, t, J 2.6, 4'-H) and 4.04 (2 H, br s, 5'-H₂).

2,5'-Imino-1-(2-O-benzoyl-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **35**. From **32**: 53.7%; R_f 0.30; m.p. 148–150 °C (from dichloromethane-diethyl ether-hexane) (Found: C, 49.85; H, 4.35; N, 10.4. C₁₇H₁₇N₃O₇S requires C, 50.1; H, 4.2; N, 10.3%); $[\alpha]_{b}^{23}$ + 32 (c 0.55 in MeOH); λ_{max} /nm 222.5 (log ε 4.43); v_{max} /cm⁻¹ 3393, 3156, 3022, 2935, 1735, 1661, 1497, 1409, 1354, 1262, 1176, 1114, 965, 870 and 826. The by-product **3** was isolated in 33.7% yield; identical (NMR and IR spectra) with an authentic specimen.

General Procedure for the Acetylation of Secondary Alcohols 17, 18, 21 and Imine 32.—To a solution of alcohol or imine (0.19 mmol) in pyridine (7 cm³) acetic anhydride (0.39 mmol) was added and the mixture kept at room temperature for 24 h as in the case of alcohols or 2 h as in the case of the imino compound. The solvent was coevaporated with toluene. The residue was purified by preparative TLC [CH₂Cl₂-MeOH (10:0.6)].

1-(2-O-Acetyl-5-azido-3-benzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil **19**. From **17**: 62%; $R_{\rm f}$ 0.24; m.p. 184–186 °C (from MeOH) (Found: C, 52.1; H, 4.65; N, 20.1. C₁₈H₁₈N₆O₈ requires C, 52.15; H, 4.4; N, 20.3%); $[\alpha]_{\rm D}^{\rm 22}$ -67 (c 0.93 in DMF); $\lambda_{\rm max}/{\rm nm}$ 224 and 255 (log ε 3.78 and 3.74); $\lambda_{\rm min}/{\rm nm}$ 244 (log ε 3.72); $\nu_{\rm max}/{\rm cm}^{-1}$ 3317, 3178, 3053, 2089, 1746, 1696, 1674, 1622, 1537, 1468, 1420, 1258, 1223, 1212, 1043, 859, 802 and 714.

1-(3-O-Acetyl-5-azido-2-benzamido-2,5-dideoxy-β-D-xylofuranosyl)uracil **20**. From **18**: 67%; R_f 0.24; m.p. 125–127 °C (from acetone) (Found: C, 52.25; H, 4.3; N, 20.15. C₁₈H₁₈N₆O₈ requires C, 52.15; H, 4.4; N, 20.3%); $[\alpha]_D^{-1} + 272$ (*c* 1.19 in MeOH); λ_{max}/nm 219.9 and 256.8 (log ε 4.03 and 3.95); λ_{min}/nm 247.5 (log ε 3.94); ν_{max}/cm^{-1} 3460infl, 3295, 3062, 2109, 1756, 1689, 1645, 1537, 1533, 1462, 1273, 1225, 1217, 1064, 816, 717 and 692.

1-(2-O-Acetyl-3-azido-5-benzamido-3,5-dideoxy-β-D-arabinofuranosyl)uracil **22**. From **21**: 71%; R_f 0.44; m.p. 86–88 °C from dichloromethane–diethyl ether–hexane) (Found: C, 52.4; H, 4.55; N, 20.25. C₁₈H₁₈N₆O₆ requires C, 52.15; H, 4.4; N, 20.3%); $[\alpha]_{D}^{22}$ + 87.5 (c 0.8 in MeOH); λ_{max} /nm 220 and 256 (log ε 4.01 and 3.89); λ_{min} /nm 246 (log ε 3.88); ν_{max} /cm⁻¹ 3344, 3203, 3061, 2932, 2111, 1753, 1713infl, 1693br, 1647infl, 1536, 1459, 1377, 1280, 1218, 1104, 810, 714 and 693.

2,5'-Imino-1-(2-O-acetyl-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **33**. From **32**: 79.6%; $R_{\rm f}$ 0.22; m.p. 217–219 °C (from MeOH) (Found: C, 41.9; H, 4.65; N, 12.3. C₁₂H₁₅N₃O₇S requires C, 41.75; H, 4.4; N, 12.15%); $[\alpha]_{D}^{23}$ -46 (c 0.75 in MeOH); $\lambda_{\rm max}/\rm{nm}$ 218.5 (log ε 4.35); $\nu_{\rm max}/\rm{cm}^{-1}$ 3414, 3225, 3084, 2934, 1750, 1663, 1624, 1576, 1502, 1410, 1223, 1177, 1000 and 970. From methanolic mother liquor an additional amount of **33** was isolated by preparative TLC; overall yield 92%.

Intramolecular Rearrangements of the 2,5'-Imino Compound 32.—To a solution of 32 (50 mg, 0.16 mmol) in pyridine (6 cm³) benzoyl chloride (50 mg, 0.36 mmol) was added and the mixture stirred at room temperature for 1.5 h; it was then treated with methanol (8 cm³). The solvent was coevaporated with toluene. The residue was recrystallized from methanol to give the crystalline 2,2'-anhydro compound 3 (48 mg, 74%), m.p. 186– 188 °C; identical (mixed m.p., NMR and IR spectra) with an authentic specimen. From the mother liquor 12 was also isolated by preparative TLC [CH₂Cl₂-MeOH (10:0.6)] (16 mg, 23.5%), m.p. 173–176 °C; identical (mixed m.p., NMR and IR spectra) with that obtained from the 2,2'-anhydro compound 3.

5'-N-Acetyl-2,5'-imino-1-(2-O-acetyl-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **34**.—To a solution of the 2,5'-imino compound **32** (80 mg, 0.26 mmol) in pyridine (5 cm³) acetyl chloride (98 mg, 1.25 mmol) was added and the mixture stirred at room temperature for 1 h. The solvent was coevaporated with toluene and the residue purified by preparative TLC [CH₂Cl₂-MeOH (10:0.6), two developments] and recrystallized from methanol-diethyl ether. It afforded the 5'-N-acetyl compound **34** (86 mg, 85%); R_f 0.42; m.p. 126–129 °C (Found: C, 43.2; H, 4.75; N, 10.75. C₁₄H₁₇N₃O₈S requires C, 43.4; H, 4.4; N, 10.85%); $[\alpha]_{D^2}^{22}$ -131 (c 0.54 in MeOH); λ_{max} /nm 230 (log ε 4.33); v_{max} /cm⁻¹ 1750, 1689, 1668, 1657, 1651, 1645, 1520, 1361, 1220, 1175, 1069 and 968.

5'-N-Benzoyl-2,5'-imino-1-(2-O-benzoyl-3-O-methylsulfonylβ-D-arabinofuranosyl)uracil **37**.—To a solution of the 2,5'-imino compound **35** (36 mg, 0.09 mmol) in pyridine (5 cm³) benzoyl chloride (24.4 mg, 0.17 mmol) was added. The mixture was then stirred at room temperature for 15 min and treated with methanol (4 cm³). The solvent was coevaporated with toluene and the residue purified by preparative TLC (CH₂Cl₂–MeOH 10:0.6). It afforded the 5'-N-benzoyl compound **37** (38 mg, 82.6%); $R_{\rm f}$ 0.42; m.p. 151–153 °C (from acetone) (Found: C, 56.15; H, 4.05; N, 8.35. C₂₄H₂₁N₃O₈S requires C, 56.35; H, 4.15; N, 8.2%); $[\alpha]_{\rm D}^{22}$ –171 (c 0.42 in MeOH); $\lambda_{\rm max}/{\rm nm}$ 228.5 (log ε 4.34); $v_{\rm max}/{\rm cm}^{-1}$ 1736, 1652, 1512, 1451, 1358, 1269, 1175, 1119, 1071, 971, 878 and 830.

General Procedure for the Preparation of Diphenylphosphoramidates **38–40**.—To a suspension of the azide **5**, **10** or **22** (0.45 mmol) in dioxane (9 cm³) triphenyl phosphite (3.05 mmol) was added and the mixture heated under reflux in the presence of equimolar amount of water (1.5 h in the case of **5** and 3 h in the case of **10** and **22**). The reaction mixture was evaporated to dryness and the residue subjected to preparative TLC [CH₂Cl₂– MeOH (10:0.7), two developments].

2,2'-Anhydro-1-(5-deoxy-5-diphenylphosphoramido-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil **38**. From **5**: 89.3%; $R_{\rm f}$ 0.18; m.p. 228–230 °C (from MeOH) (Found: C, 49.15; H, 4.4; N, 8.1. $C_{22}H_{22}N_3O_9PS$ requires C, 49.35; H, 4.15; N, 7.85%); $[\alpha]_D^{24} - 40$ (c 0.2 in DMF); $\lambda_{\rm max}/{\rm nm}$ 221 and 245 (log ε 3.79 and 3.72); $\lambda_{\rm min}/{\rm nm}$ 234 (log ε 3.70); $v_{\rm max}/{\rm cm}^{-1}$ 3152, 3092, 2932, 1660, 1634infl, 1638infl, 1622, 1534, 1477, 1337, 1254, 1196, 1173, 1023, 951, 940, 915, 902, 841 and 823; $\delta_{\rm H}([^2{\rm H}_6]-{\rm DMSO})$ 7.75 (1 H, d, J 7.6, 6-H), 7.45–7.11 (10 H, m, ArH), 6.40 (1 H, d, J 5.6, 1'-H), 6.05 (1 H, m, 5'-NH), 5.85 (1 H, d, J 7.6, 5-H), 5.62 (1 H, d, J 5.6, 2'-H), 5.46 (1 H, d, J 2.4, 3'-H), 4.33 (1 H, sext, J 2.4 and 7.1, 4'-H), 3.28 (3 H, s, MsMe) and 3.02–2.91 (2 H, m, 5'-H₂); m/z 535 (M⁺).

1-(5-Deoxy-5-diphenylphosphoramido-2,3-epoxy-β-D-lyxofuranosyl)uracil **39**. From **10**: 78%; R_f 0.36; m.p. 128–130 °C (from dichloromethane–diethyl ether–hexane) (Found: C, 54.95; H, 4.65; N, 9.05. C₂₁H₂₀N₃O₇PS requires C, 55.15; H, 4.4; N, 9.2%); $[\alpha]_D^{32}$ +21 (c 1 in MeOH); λ_{max}/nm 256 (log ε 3.94); ν_{max}/cm^{-1} 3419, 3168, 3067, 2922, 1758, 1717, 1696, 1673, 1648, 1634, 1519, 1488, 1459, 1385, 1255, 1218, 1196, 1103, 957, 907, 888 and 811; $\delta_H([^2H_6]$ -DMSO) 11.06 (1 H, br s, 3-NH), 7.59 (1 H, d, J 8.2, 6-H), 7.46–7.06 (10 H, m, ArH), 5.99 (1 H, s, 1'-H), 5.91–5.72 (1 H, m, 5'-NH), 5.57 (1 H, d, J 8.2, 5-H), 4.07– 3.87 (3 H, m, 2'-, 3'- and 4'-H), 3.30 (1 H, dd, J 12.6 and 1.8, 5'-H_A), 3.22 (1 H, dd, J 12.6 and 2.1, 5'-H_B); m/z 457 (M⁺).

1-(2-O-Acetyl-5-benzamido-3,5-dideoxy-3-diphenylphosphoramido-β-D-arabinofuranosyl)uracil **40**. From **22**: 83%; R_f 0.42; We thank the Croatian Scientific Research Foundation and the European Communities Commission—International Scientific Cooperation (Contract No. CI1/0523) for their support of this work.

1459, 1385, 1255, 1218, 1196, 1103, 957, 907 and 811; m/z 621

References

- 1 J. F. Codington, R. Fecher and J. J. Fox, J. Am. Chem. Soc., 1960, 82, 2794.
- 2 R. Fecher, J. F. Codington and J. J. Fox, J. Am. Chem. Soc., 1961, 83, 1889.
- 3 N. C. Yung, J. H. Burchenal, R. Fecher, R. Duschinsky and J. J. Fox, J. Am. Chem. Soc., 1961, 83, 4060.
- 4 V. Škarić, D. Katalenić, D. Škarić and I. Salaj, J. Chem. Soc. Perkin Trans. 1, 1982, 2091.
- 5 T.-S. Lin, J.-Y.Guo, R. F. Schinazi, C. K. Chu, J.-N. Xiang and W. H. Prusoff, *J. Med. Chem.*, 1988, **31**, 336.
- 6 M. Millard, A. Faraj, F. Frappier, J.-C. Florent, D. S. Grierson and C. Monneret, *Tetrahedron Lett.*, 1989, **30**, 197.

- 7 H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. St. Clair and S. Nusinoff, Proc. Nat. Acad. Sci. USA, 1985, 82, 7096.
- 8 F. M. Unger, R. Christian and P. Waldstatten, *Tetrahedron Lett.*, 1979, 605.
- 9 A. M. Ozols, A. V. Azhayev, A. A. Krayevsky, A. S. Ushakov, N. V. Gnuchev and B. P. Gottikh, *Synthesis*, 1980, 559.
- 10 K. Kikugawa, M. Ichino, T. Kusama and T. Ukita, Chem. Pharm. Bull., 1969, 17, 798.
- 11 J. P. Horwitz, A. J. Thompson and J. A. Urbanski, J. Org. Chem., 1962, 27, 3045.
- 12 T.-S. Lin and W. H. Prusoff, J. Carbohydr. Nucleosides Nucleotides, 1975, 2, 185.
- 13 M. Hirata, Chem. Pharm. Bull., 1968, 16, 291.
- 14 T. Naito, M. Hirata, Y. Nakai, T. Kobayashi and M. Kano, Chem. Pharm. Bull., 1965, 13, 1258.
- 15 J. Brokeš and J. Beránek, Collect. Czech. Chem. Commun., 1975, 40, 3061.
- 16 M. Christl, H. J. Reich and J. D. Roberts, J. Am. Chem. Soc., 1971, 93, 3463.
- 17 J. F. Codington, R. Fecher and J. J. Fox, J. Org. Chem., 1962, 27, 163.
- 18 A. J. Jones, D. M. Grant, M. W. Winkley and R. K. Robins, J. Am. Chem. Soc., 1970, 92, 4079.
- 19 W. Freist, K. Schattka, F. Cramer and B. Jastroff, Chem. Ber., 1972, 105, 991.
- 20 V. Kvita and G. Baschang, Helv. Chim. Acta, 1972, 55, 2683.
- 21 H. H. Mantsch and J. C. P. Smith, *Biochem. Biophys. Res. Commun.*, 1972, 46, 808.

Paper 1/051051 Received 8th October 1991 Accepted 8th January 1992

(M⁺).