Azido-(Amino-)furanosyl Nucleosides and their Phosphoramidates

Darinka Katalenić and Vinko Škarić*
Laboratory of Stereochemistry and Natural Products, 'Ruder Bošković' Institute, 41001 Zagreb, Croatia

Abstract

The ring-opening of 2,2'-anhydro-1-[5-azido-5 and 5-benzamido-35-deoxy-3-O-methylsulfonyl- β D -arabinofuranosyl] uracil by the ion exchanger Dowex $50\left(\mathrm{H}^{+}\right)$afforded the corresponding 1-[5-azido8 and 5-benzamido- 125 -deoxy-3-O-methylsulfonyl- β-d-arabinofuranosyl]uracil. Hydrogenolysis of the azido nucleosides over Pd-black in the presence of benzoic acid anhydride led to the corresponding benzamido nucleosides in high yields. The 5^{\prime}-azido- $2^{\prime}, 3^{\prime}$-oxirane 10 on reaction with ethanolic ammonia generated 1 -(3-amino-5-azido-3,5-dideoxy- β-D-arabinofuranosyl) uracil 15 and 1 - (2 -amino- 5 -azido2,5 -dideoxy- β - D -xylofuranosyl) uracil 16 in a ratio $2: 1$. The $5^{\prime}-O$-mesyl- $2^{\prime}, 3^{\prime}$-oxirane 25 , on being treated with NaN_{3} in DMF at $100^{\circ} \mathrm{C}$, afforded 2', 5^{\prime}-anhydro-1-(3-azido-3-deoxy- β - D -arabinofuranosyl) uracil 26 (54.5\%), 3', 5^{\prime}-diazido- β-d-arabinofuranosyl 27 (20.6\%) and 2',5'-diazido- β-d-xylofuranosyl 28 (5.4\%). The hydrogenolysis of 5 over Pd-black proceeded into 2, 5^{\prime}-imino-1-(3-O-methyl-sulfonyl- β-D-arabinofuranosyl) uracil 32 which, as the 5^{\prime}-benzamido derivative 36 , was transformed into 3. The 5^{\prime}-azido compound 5 and 10 on reaction with triphenyl phosphite in aqueous dioxane gave the respective 5^{\prime}-diphenylphosphoramidate 38 and 39 . Similarly, the 3^{\prime}-azido compound 22 was converted into 3^{\prime}-diphenylphosphoramidate 40.

Appropriately activated uridine may undergo intramolecular transformation to give arabino-, lyxo- and xylo-furanosyl stereoisomers. ${ }^{1-3}$ Recently, we described synthesis of 5^{\prime}-azido(5^{\prime}-amino-)- 5^{\prime}-deoxyuridine and its furanosyl stereoisomers as well as $5^{\prime}-\mathrm{N}$-aminoacyl- and $5^{\prime}-\mathrm{N}$-peptidyl- 5^{\prime}-amino- 5^{\prime}-deoxy5,6 -dihydrouridine. ${ }^{4}$ Here, we extend our work on stereoisomeric azido-, amino-, phosphoramido pyrimidine nucleosides, and their intramolecular cyclisations.

Current interest in azido nucleoside chemistry stems from the antiviral activity ${ }^{5,6}$ of 3^{\prime}-azido- 3^{\prime}-deoxythymidine (AZT). ${ }^{7}$ However, the increasing resistance of human immunodeficiency virus (HIV) to AZT stimulated syntheses of a number of novel azido nucleosides. For this purpose the silyl (HilbertJohnson) ${ }^{8.9}$ coupling of azido furanose with nucleic acid bases, the ring-opening of 1 -(3,5 -anhydro- β-D-xylofuranosyl)uracil by $\operatorname{LiN}_{3}{ }^{10}$ and the nucleophilic substitution of $5^{\prime}-O$-sulfonyluridine by $\mathrm{NaN}_{3},{ }^{11,12}$ have most frequently been exploited.
Recently, we showed that the intramolecular transformations of 5^{\prime}-benzamido-5'-deoxy- $2^{\prime}, 3^{\prime}$-di- O-methylsulfonyluridine 1 when heated under reflux in water gave 1-(5-benzamido-5-deoxy- β-D-lyxofuranosyl)uracil ${ }^{4} 2$ (Scheme 1). We also reported that transformations of 1 on treatment with potassium phthalimide in dioxane stopped at $2,2^{\prime}$-anhydro-1-(5-benz-amido-5-deoxy-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 3. We report here transformations of $2^{\prime}, 3^{\prime}, 5^{\prime}$-tri- O methylsulfonyluridine ${ }^{1} 4$ on reaction with $\mathrm{NaN}_{3}-\mathrm{DMF}$ to yield $\quad 2,2^{\prime}$-anhydro-1-(5-azido-5-deoxy-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 5.

The arabinofuranosyl configuration of 5 was confirmed by the characteristic ${ }^{1} \mathrm{H}$ NMR spectral data, particularly by the coupling constant, $J_{1^{\prime}, 2} \cdot 5.9 \dagger^{-4,13}$ (Table 1). The UV absorbancy of 5 at $\lambda_{\text {max }} / \mathrm{nm} 245$ indicated also its quinone-like structure.

The $2,2^{\prime}$-anhydro compound 5 when heated under reflux in water or dilute hydrochloric acid gave 1-(5-azido-5-deoxy- β-Dlyxofuranosyl)uracil 6, characterized as its $2^{\prime}, 3^{\prime}-O$-isopropylidene derivative 7 . In contrast to the specific rotation of the $2,2^{\prime}-$ anhydro compound $5,[\alpha]_{\mathrm{D}}^{27}-37 \dagger(c 1, \mathrm{DMF})$, the lyxofuranosyl stereoisomer 6, $[\alpha]_{\mathrm{D}}^{24}+163$ (c $\left.0.86, \mathrm{MeOH}\right)$, and $7,[\alpha]_{D}^{22}+158(c 1.15, \mathrm{MeOH})$, were significantly dextrorotatory.
$\dagger J$ Values in Hz and $[\alpha]_{\mathrm{D}}$ values in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$ throughout.

The ring-opening of 5 , on treatment with the ion exchanger Dowex $50\left(\mathrm{H}^{+}\right),{ }^{2}$ afforded 1-(5-azido-5-deoxy-3-O-methyl-sulfonyl- β-D-arabinofuranosyl)uracil 8. The latter, on mesylation, gave the respective $2^{\prime}-O$-mesyl derivative 9 . Furthermore, treatment of 5 with aqueous NaOH gave 1-(5-azido-5-deoxy-2,3-epoxy- β-D-lyxofuranosyl)uracil 10. Similarly, treatment of 5 with $\mathrm{NaOMe}-\mathrm{MeOH}$ afforded 1 -(5-azido-5-deoxy-2,3-epoxy- β-D-lyxofuranosyl)-2-O-methyluracil 11 through an ${ }^{-}$OMe attack at the C-2 position of 5 , followed by the $\mathrm{C}(2)-\mathrm{O}-\mathrm{C}\left(2^{\prime}\right)$ ring-opening and ${ }^{-} \mathrm{O}-\mathrm{C}\left(2^{\prime}\right), \mathrm{C}\left(3^{\prime}\right)$ cyclisation. ${ }^{14}$ As expected, the anomeric $\mathrm{H}-\mathrm{C}\left(1^{\prime}\right)$ in the ${ }^{1} \mathrm{H}$ NMR spectra of the $2^{\prime}, 3^{\prime}$-oxiranes 10 and 11 exhibited the singlet-like signals at δ_{H} 6.1.

In analogy to the stereochemically controlled ring-opening of the azido compound 5 to give 8 (Scheme 1, pathway vi), the benzamido derivative 3 afforded 1-(5-benzamido-5-deoxy-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 12. The combined hydrogenolysis-benzoylation of the azido compounds 5 and 10 over Pd-black in the presence of benzoic acid anhydride smoothly proceeded to give the 5^{\prime}-benzamido $2,2^{\prime}$-anhydro compound 3 (84.3%) and 1-(5-benzamido-5-deoxy-2,3-epoxy-β-D-lyxofuranosyl)uracil 14 (97%), respectively. It should be pointed out that hydrogenolysis of the 5^{\prime}-azido compound 10 , followed by the benzoylation of the resulting 1 -(5 -amino-5-deoxy-2,3-epoxy- β-D-lyxofuranosyl)uracil 13 afforded the 5^{\prime} benzamido compound 14 in lower yield than that obtained from the above described hydrogenolysis-benzoylation of the 5^{\prime} azido compound 10.

For the reason we shall deal with below, treatment of the $2^{\prime}, 3^{\prime}$-oxirane 10 with ammonia in ethanol ${ }^{15}$ generated 1 -(3-amino-5-azido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 15 and 1-(2-amino-5-azido-2,5-dideoxy- β-D-xylofuranosyl)uracil 16 in a $2: 1$ ratio (established by their ${ }^{1} \mathrm{H}$ NMR spectra). These stereoisomers were separated as 1-(5-azido-3-benzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 17, $R_{\mathrm{f}} 0.19$ (47\%), and 1-(5-azido-2-benzamido-2,5-dideoxy- β-D-xylofuranosyl)uracil 18, $R_{\mathrm{f}} 0.15(36 \%)$, characterized also as the $2^{\prime}-O$-acetyl 19 and $3^{\prime}-O$-acetyl derivative 20 , respectively (Scheme 2).
The 5^{\prime} 'benzamido- $2^{\prime}, 3^{\prime}$-oxirane 14 on reaction with $\mathrm{NaN}_{3}-$ DMF gave 1 -(3 -azido- 5 -benzamido- 3,5 -dideoxy- β-D-arabinofuranosyl)uracil $21(78 \%)$, characterized as its $2^{\prime}-O$-acetyl derivative 22. Comparing the ${ }^{1} \mathrm{H}$ NMR spectra of the 2^{\prime} hydroxy compound 21 with that of the 2^{\prime}-acetoxy derivative 22 ,

Scheme 1 Reagents and conditions: i, $\mathrm{H}_{2} \mathrm{O}$, heat; ii, $\mathrm{Pht}-\mathrm{K}$-dioxane; iii, $\mathrm{NaN}_{3}-\mathrm{DMF} ; \mathrm{iv}, \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{HCl}-\mathrm{H}_{2} \mathrm{O} ; \mathrm{v}, \mathrm{Me}_{2} \mathrm{CO}-\mathrm{CuSO}_{4}-\mathrm{H}_{2} \mathrm{SO}_{4}$; vi, Dowex $50\left(\mathrm{H}^{+}\right)-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$; vii, $\mathrm{MsCl}-$ py; viii, $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}$; ix, $\mathrm{NaOMe}-\mathrm{MeOH} ; \mathrm{x},\left[\mathrm{H}_{2}\right]-\mathrm{Pd}$ black $-\mathrm{Bz}_{2} \mathrm{O}-\mathrm{MeOH} ;$ xi, $\left[\mathrm{H}_{2}\right]-\mathrm{Pd}$ black $-\mathrm{EtOH} ; \mathrm{xii}, \mathrm{Bz}{ }_{2} \mathrm{O}-$ py

Scheme 2 Reagents and conditions: i, $\mathrm{NH}_{3}-\mathrm{EtOH} ; \mathrm{ii}, \mathrm{Bz}_{2} \mathrm{O}-$ py; iii, $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{py}$; iv, $\mathrm{NaN}_{3}-\mathrm{DMF} ;$ v, $\left[\mathrm{H}_{2}\right]-\mathrm{Pd}$ black-EtOH; vi, $\left[\mathrm{H}_{2}\right]-\mathrm{Pd}$ black- $\mathrm{Bz}_{2} \mathrm{O}-$ MeOH

Scheme 3 Reagents and conditions: i, $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}$; ii, $\mathrm{NaN}_{3}-\mathrm{DMF}$; iii, $\left[\mathrm{H}_{2}\right]-\mathrm{Pd}$ black- $\mathrm{EtOH} ; \mathrm{iv}, \mathrm{Bz} \mathbf{2}_{2} \mathrm{O}-\mathrm{py}$
the latter showed the expected downfield resonances for the $2^{\prime}-\mathrm{H}(0.86 \mathrm{ppm})$ and $3^{\prime}-\mathrm{H}(0.43 \mathrm{ppm})$ (Table 1). Moreover, the ${ }^{13} \mathrm{C}$ NMR spectrum of 22 (Table 2) confirmed the so-called β-acetyl effect ${ }^{16}$ by exhibiting a downfield C-2' shift (1.2 ppm) and an upfield C-3' shift (2.3 ppm).
Hydrogenolysis of the 3^{\prime}-azido isomer 22 over Pd-black in
ethanol yielded 1-(2-O-acetyl-3-amino-5-benzamido-3,5-dide-oxy- β-D-arabinofuranosyl)uracil 23 which, on benzoylation, yielded the $3^{\prime}, 5^{\prime}$-dibenzamido compound $24(81 \%)$. The latter was prepared by hydrogenolysis-benzoylation of the azido compound 22 in 92% yield.

Treatment of 1-(5-O-methylsulfonyl-2,3-epoxy- β-D-lyxo-

Table $1 \quad{ }^{1}$ H NMR chemical shifts $\left(\delta_{H}\right)$, and coupling constants, given in parentheses, for the 1-(furanos- 1^{\prime}-yl)uracil isomers ${ }^{\text {a.b.c.a.e.f.g.a. }}$

Compound	Solvent *	$\begin{aligned} & \text { 6-H } \\ & d \end{aligned}$	$\begin{aligned} & 1^{\prime}-H \\ & d \end{aligned}$	$\begin{aligned} & 5-\mathrm{H} \\ & \mathrm{~d} \end{aligned}$	$2^{\prime}-\mathrm{H}$	$3^{\prime}-\mathrm{H}$	$4^{\prime}-\mathrm{H}$	$\begin{aligned} & 5^{\prime}-\mathrm{H}_{\mathrm{A}} \\ & \mathrm{dd} \end{aligned}$	$\begin{aligned} & -\mathrm{H}_{2} \\ & -\mathrm{H}_{\mathrm{B}} \end{aligned}$
Data for arabino-, lyxo- and xylo-isomers									
6	A	$\begin{gathered} 7.83 \\ (8.2) \end{gathered}$	$\begin{gathered} 6.07 \\ (6.5) \end{gathered}$	$\begin{array}{r} 5.55 \\ (8.2) \end{array}$	$\begin{aligned} & 4.40 \mathrm{dd} \\ & (6.5,4.7) \end{aligned}$	4.08	3.91	$\begin{aligned} & 3.57 \mathrm{~d} \\ & (6.2) \end{aligned}$	
$7{ }^{\text {i }}$	B	$\begin{gathered} 7.49 \\ (8.2) \end{gathered}$	$\begin{array}{r} 5.85 \\ (3.2) \end{array}$	$\begin{array}{r} 5.73 \\ (8.2) \end{array}$	4.93 -	4.72	$\begin{array}{r} 3.93 \mathrm{sext} \\ (3.2,6.2) \end{array}$	$3.65 \mathrm{~d}$	
8	A	$\begin{gathered} 7.52 \\ (8.2) \end{gathered}$	$\begin{gathered} 6.06 \\ (4.1) \end{gathered}$	$\begin{gathered} 5.60 \\ (8.2) \end{gathered}$	$\begin{gathered} 4.88 \mathrm{dd} \\ (4.1,3.2) \end{gathered}$	$\begin{gathered} 4.43 \mathrm{dd} \\ (3.2,4.7) \end{gathered}$	4.29-4.07	$\begin{aligned} & 3.68 \mathrm{~d} \\ & (5.6) \end{aligned}$	
9	C	$\begin{array}{r} 7.55 \\ (8.2) \end{array}$	$\begin{array}{r} 6.25 \\ (5.0) \end{array}$	$\begin{gathered} 5.76 \\ (8.2) \end{gathered}$	$\begin{gathered} 5.48 \mathrm{dd} \\ (5.0,3.2) \end{gathered}$	$\begin{gathered} 5.31 \mathrm{dd} \\ (3.2,5.3) \end{gathered}$	$\begin{gathered} \text { 4.34sext } \\ (5.3,4.1) \end{gathered}$	3.84-3.76	
12	A	$\begin{array}{r} 7.70 \\ (8.2) \end{array}$	$\begin{array}{r} 6.48 \\ (3.8) \end{array}$	$\begin{array}{r} 5.53 \\ (8.2) \end{array}$	$\begin{gathered} 5.02 \mathrm{t} \\ (2.1) \end{gathered}$	4.44 -	4.18	3.82-3.64	
19	D	$\begin{gathered} 7.88 \\ (8.2) \end{gathered}$	$\begin{array}{r} 6.27 \\ (5.6) \end{array}$	$\begin{gathered} 5.75 \\ (8.2) \end{gathered}$	$\begin{gathered} 5.67 \mathrm{dd} \\ (5.6,4.1) \end{gathered}$	4.82	4.60	3.78-3.66	
$20{ }^{j}$	D	$\begin{array}{r} 7.76 \\ (8.2) \end{array}$	$\begin{array}{r} 6.46 \\ (5.3) \end{array}$	$\begin{gathered} 5.71 \\ (8.2) \end{gathered}$	5.73-5.62	$\begin{gathered} 5.80 \mathrm{sext} \\ (4.1,7.3) \end{gathered}$	4.38-4.21	3.85-3.74	
21	D	$\begin{array}{r} 7.77 \\ (8.2) \end{array}$	$\begin{gathered} 6.11 \\ (4.7) \end{gathered}$	$\begin{array}{r} 5.55 \\ (8.2) \end{array}$	$\begin{aligned} & 4.49 \\ & \text { br s } \end{aligned}$	4.29	-	3.81	
22	D	$\begin{array}{r} 7.77 \\ (8.2) \end{array}$	$\begin{array}{r} 6.21 \\ (4.9) \end{array}$	$\begin{array}{r} 5.63 \\ (8.2) \end{array}$	$\begin{gathered} 5.35 \mathrm{dd} \\ (4.9,3.5) \end{gathered}$	$\begin{gathered} 4.48 \mathrm{dd} \\ (3.5,5.6) \end{gathered}$	$\begin{aligned} & 4.14 \mathrm{dd} \\ & (5.6,10.4) \end{aligned}$	3.97-3.84	
24	A	$\begin{array}{r} 7.74 \\ (8.2) \end{array}$	$\begin{array}{r} 6.32 \\ (4.9) \end{array}$	$\begin{gathered} 5.61 \\ (8.2) \end{gathered}$	$\begin{gathered} 5.46 \mathrm{dd} \\ (4.9,3.5) \end{gathered}$	$\begin{aligned} & \text { 4.52sext } \\ & (3.5,6.7) \end{aligned}$	4.33-4.14	3.80-3.68	
40^{k}	D	$\begin{array}{r} 7.73 \\ (8.2) \end{array}$	$\begin{array}{r} 6.29 \\ (4.7) \end{array}$	$\begin{array}{r} 5.59 \\ (8.2) \end{array}$	$\begin{gathered} 5.41 \mathrm{t} \\ (4.7) \end{gathered}$	4.38	4.02	3.86-3.65	
Data for imino nucleosides									
32	A	$\begin{gathered} 7.41 \\ (7.6) \end{gathered}$	$\begin{gathered} 5.83 \\ (6.7) \end{gathered}$	$\begin{gathered} 5.60 \\ (7.6) \end{gathered}$	$\begin{aligned} & 4.91 \mathrm{~d} \\ & (2.3) \end{aligned}$	4.56	4.49	$\begin{aligned} & 3.47 \\ & (14.2,3.1) \end{aligned}$	$\begin{aligned} & 3.21 \\ & (14.2,1.8) \end{aligned}$
33	A	$\begin{array}{r} 7.39 \\ (7.6) \end{array}$	$\begin{gathered} 6.16 \\ (6.7) \end{gathered}$	$\begin{gathered} 5.61 \\ (7.6) \end{gathered}$	$\begin{gathered} 5.36 \mathrm{dd} \\ (6.7,1.8) \end{gathered}$	$\begin{aligned} & 5.19 \mathrm{~d} \\ & (1.8) \end{aligned}$	4.73-4.58	$\begin{gathered} 3.52 \\ (16.2,2.9) \end{gathered}$	$\begin{aligned} & 3.26 \\ & (16.2,1.8) \end{aligned}$
34	A	$\begin{array}{r} 7.95 \\ (7.6) \end{array}$	$\begin{array}{r} 6.39 \\ (7.3) \end{array}$	$\begin{gathered} 6.08 \\ (7.6) \end{gathered}$	$\begin{gathered} 5.49 \mathrm{~d} \\ (7.3) \end{gathered}$	$\begin{aligned} & 4.85 \\ & \mathrm{~s} \mathrm{br} \end{aligned}$	$\begin{aligned} & 4.77 \mathrm{~d} \\ & (2.6) \end{aligned}$	$\begin{aligned} & 4.99 \\ & (14.6,2.6) \end{aligned}$	$\begin{aligned} & 3.22 \\ & (14.6,1.8) \end{aligned}$
35	C	$\begin{array}{r} 7.28 \\ (7.6) \end{array}$	$\begin{array}{r} 6.15 \\ (6.8) \end{array}$	$\begin{gathered} 5.68 \\ (7.6) \end{gathered}$	$\begin{gathered} 5.84 \mathrm{dd} \\ (6.8,1.5) \end{gathered}$	$\begin{aligned} & 5.44 \mathrm{~d} \\ & (1.5) \end{aligned}$	$\begin{aligned} & 4.81 \\ & \mathrm{~s} \text { br } \end{aligned}$	$\begin{aligned} & 4.06 \\ & (14.5,2.9) \end{aligned}$	$\begin{aligned} & 3.47 \\ & (14.5,1.8) \end{aligned}$
37^{\prime}	A	$\begin{gathered} 7.94 \\ (7.6) \end{gathered}$	$\begin{array}{r} 6.64 \\ (6.5) \end{array}$	$\begin{gathered} 5.89 \\ (7.5) \end{gathered}$	5.71 -	5.68	$\begin{aligned} & 4.97 \\ & \mathrm{~s} \text { br } \end{aligned}$	$\begin{aligned} & 4.79 \\ & (14.5,2.9) \end{aligned}$	$\begin{aligned} & 3.50 \\ & (14.5,1.8) \end{aligned}$

${ }^{a} \mathrm{Me}(\mathrm{Ms})$ of $(\mathbf{8}, 9,12,32-37)$ at $3.43-3.13$ (s). ${ }^{b} \mathrm{~N}$ - and O-Benzoyl of $\left(\mathbf{1 2 , 1 9 - 2 2 , 2 4 , 3 5 , 3 7 , 4 0)}\right.$ at $8.01-7.71$ and $7.64-7.28 .{ }^{c} \mathbf{H}-\mathrm{N}(3)$ of $(6,8,9,12,19-22$, $24,40)$ at $11.21-9.41(\mathrm{br} \mathrm{s}), \mathrm{D}_{2} \mathrm{O}$-exchangeable. ${ }^{d} 5^{\prime}-\mathrm{NH}$ of $(19,21,22,24,32,33,35,40)$ at $8.56-6.62$, $\mathrm{D}_{2} \mathrm{O}$-exchangeable. ${ }^{e} 3^{\prime}-\mathrm{NH}$ of $(19,24,40)$ at $8.85-5.82, \mathrm{D}_{2} \mathrm{O}$-exchangeable. ${ }^{f} 2^{\prime}-\mathrm{OH}$ and $3^{\prime}-\mathrm{OH}$ of $(6,8,12,21,32)$ at $6.62-4.07, \mathrm{D}_{2} \mathrm{O}$-exchangeable. ${ }^{9} \mathrm{Me}(\mathrm{Ac})$ of $(\mathbf{1 9}, \mathbf{2 0}, \mathbf{2 2}, \mathbf{2 4}, \mathbf{3 3}, 34,40)$ at $2.29-$ 1.83 (s). ${ }^{h}$ Two dimensional spectra of $(34,35,37)$ on JEOL Varian Gemini- 300 instrument. ${ }^{i}(\mathrm{Me})_{2}$ at 1.47 and 1.32 . $2^{\prime}-\mathrm{NH}$ at $8.41-8.34, \mathrm{D}_{2} \mathrm{O}-$ exchangeable. ${ }^{k} \mathrm{NPO}(\mathrm{OPh})_{2}$ at $7.46-7.06$. $^{i} \mathrm{NCOPh}$ at 7.52-6.70.

* $A=\left[{ }^{2} \mathbf{H}_{6}\right]$-DMSO, $B=C^{2} \mathbf{H C l}_{3}, \mathrm{C}=\mathrm{C}^{2} \mathbf{H}_{3} \mathrm{CN}, \mathrm{D}=\left[{ }^{2} \mathbf{H}_{6}\right]$ acetone.
furanosyl)uracil ${ }^{17} 25$ with NaN_{3} at $100^{\circ} \mathrm{C}$ afforded $2^{\prime}, 5^{\prime}$ -anhydro-1-(3-azido-3-deoxy- β-D-arabinofuranosyl)uracil 26 (54.5%), most probably via the intermediacy of [A] (Scheme 3). This reaction (depicted by dotted lines) led also to $1-(3,5-$ diazido-3,5-dideoxy- β-d-arabinofuranosyl)uracil 27 (20.6\%), $R_{\mathrm{f}} 0.43$, and in lesser extent to 1-(2,5-diazido-2,5-dideoxy- β-Dxylofuranosyl)uracil $28, R_{\mathrm{f}} 0.42$. The hydrogenolysis of 26 over Pd-black-EtOH gave the corresponding 3^{\prime}-amino compound 29 , characterized as its 3^{\prime}-benzamido derivative 30 . The ${ }^{13} \mathrm{C}$ NMR spectra of the $2^{\prime}, 5^{\prime}$-oxolanes 26,29 and 30 exhibited C-5' downfield shifts (11 ppm) as recorded in the $2,5^{\prime}$-anhydro series. ${ }^{18}$
The hydrogenolysis of the 5^{\prime}-azido- $2,2^{\prime}$-anhydro compound 5 over Pd-black in ethanol afforded $2,2^{\prime}$-anhydro-1-(5-amino-5-deoxy-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 31 which spontaneously rearranged into the hitherto unknown 2,5'-imino-1-(3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 32 (94%) (Scheme 4).
While the imino compound 32 on reaction with acetic anhydride yielded 2,5'-imino-1-(2-O-acetyl-3-O-methylsulfon-$\mathrm{yl}-\beta$-D-arabinofuranosyl)uracil 33 (79.6%), on reaction with acetyl chloride it gave $5^{\prime}-\mathrm{N}$-acetyl-2,5'-imino-1-(2-O-acetyl-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 34 (85%). The benzoylation of 32 with benzoic acid anhydride afforded $2,5^{\prime}-$ imino-1-(2-O-benzoyl-3- O-methylsulfonyl- β-D-arabinofuranosyl)uracil 35 (53.7%) and 5^{\prime}-benzamido- $2,2^{\prime}$-anhydro com-
pound 3 (33.7%) (Scheme 1). The latter was unexpectedly formed by an intamolecular ${ }^{-} \mathrm{O}-\mathrm{C}\left(2^{\prime}\right)$ attack at the $\mathrm{C}-2$ position of the 5^{\prime}-benzamido- $2,5^{\prime}$-imino intermediate 36 . The structure of the $2^{\prime}-O$-benzoyl derivative 35 was supported by its facile hydrolysis into the hydroxy compound 32.

It is worth noting that compound 32 on reaction with benzoyl chloride afforded the $2,2^{\prime}$-anhydro compound 3 (74%) which then partly cleaved to give up 5^{\prime}-benzamido- 3^{\prime} - O-mesyl compound 12 (Scheme 1). Such a rearrangement was prevented when the β-oriented 2^{\prime}-hydroxy group was blocked as in 5^{\prime} -N-benzoyl-2,5'-imino-1-(2-O-benzoyl-3- O-methylsulfonyl- β-D-arabino-furanosyl)uracil 37 . The latter was easily prepared from the $2^{\prime}-O$-benzoyl derivative 35 on reaction with benzoyl chloride. The aromatic protons of the N, O-dibenzoyl derivative 37, were clearly assigned by two-dimensional (COSY) ${ }^{1} \mathrm{H}$ NMR spectrum showing the O-benzoyl signals at $\delta_{\mathrm{H}} 7.96-7.93$, $7.81-7.63,7.61-7.56$ and N-benzoyl signals at $\delta_{\mathrm{H}} 7.52-7.50$, 7.25-7.21, 6.74-6.70 for meta- $(2 \mathrm{H})$, para- $(1 \mathrm{H})$ and ortho- $(2 \mathrm{H})$, respectively.
Phosphorylation of the azido nucleosides facilitated the regioselective phosphorodiamido bond formation. Thus, the 5^{\prime}-azido compounds 5 and 10 on reaction with triphenyl phosphite in dioxane-water ${ }^{19,20}$ afforded $2,2^{\prime}$-anhydro-1-(5-deoxy-5-diphenylphosphoramido- β-D-arabinofuranosyl)uracil 38 (89.3%) and 1-(5 -deoxy-5-diphenylphosphoramido-2,3-epoxy- β-d-lyxofuranosyl)uracil 39 (78%); respectively

Table $2{ }^{13} \mathrm{C}$ NMR spectroscopic data $\left[\delta_{\mathrm{C}}(\mathrm{ppm})\right]$ for the 1-(furanos-1'-yl)uracil isomers ${ }^{\text {a.b.c.d.e }}$

Compound	Solvent*	$\begin{aligned} & \mathrm{C}-4 \\ & \text { (s) } \end{aligned}$	$\mathrm{C}-2$ (s)	C-6 (d)	C-5 (d)	C- 1^{\prime} (d)	C-4' (d)	C-2' (d)	C-3' (d)	$\mathrm{C}-5^{\prime}$ (t)
Arabino-, lyxo- and xylo-isomers										
6	A	162.9	150.5	142.2	99.8	83.2	77.3	70.3	69.2	49.9
$7^{\text {f }}$	D	163.1	150.3	142.0	100.3	84.8	80.1	78.9	77.7	49.7
8	C	164.7	151.6	143.2	101.9	86.1	84.4	74.6	80.4	51.8
9	C	164.1	151.2	142.3	102.9	84.5	81.3	80.0	80.6	51.2
12	A	163.3	150.5	142.6	100.3	85.7	84.7	72.9	80.8	40.9
19	D	163.5	151.5	140.9	103.4	87.7	79.1	76.4	61.0	50.9
20	D	163.3	150.9	141.9	102.1	84.1	80.4	57.4	76.9	52.7
21	D	163.4	150.8	142.7	100.7	85.7	79.9	74.9	68.1	41.6
22	D	163.0	150.3	141.8	101.2	84.2	80.2	76.1	65.8	41.0
24	A	162.9	150.0	141.7	100.9	83.5	79.7	75.9	56.7	41.2
40	D	163.6	150.3	142.2	101.1	83.8	80.7	77.3	58.1	41.0
2,2'-Anhydro compounds										
3	A	172.1	159.8	137.4	109.7	90.5	84.1	86.7	82.1	40.9
5	A	171.1	159.7	136.8	109.2	90.1	83.9	86.3	81.9	51.2
38	A	170.8	159.3	136.8	109.0	89.7	84.6	86.1	81.0	42.2
Oxiranes										
10	A	162.6	149.9	140.7	101.8	80.6	75.4	55.4	55.1	49.7
11^{9}	D	169.5	155.8	138.7	108.4	83.4	76.8	56.1	55.9	50.5
14	A	163.3	150.6	141.3	101.9	81.2	75.6	56.1	55.9	39.2
39	A	163.0	150.7	141.3	101.9	81.0	76.7	56.3	55.5	40.7
Oxolanes										
26	A	163.2	150.5	140.6	100.6	89.1	79.6	75.6	65.2	72.6
29	A	163.4	150.6	141.1	100.3	89.8	81.8	77.6	59.6	72.8
30	A	163.4	150.6	140.9	100.5	89.4	79.5	75.9	58.2	72.2
Imino nucleosides										
32	A	169.9	158.7	143.7	107.2	93.8	87.8	77.7	81.4	47.7
33	A	169.2	158.1	143.1	107.4	91.7	83.7	78.1	81.1	47.3
34	B	169.4	152.1	143.9	111.2	93.9	82.4	79.2	82.1	45.7
35	D	170.1	160.3	143.9	108.7	93.9	85.4	79.2	83.4	48.4
37	A	171.9	153.6	145.3	108.9	92.9	83.2	79.7	82.2	47.5

${ }^{a} \mathrm{CO}$ (amide) and CO (ester) of $\left(\mathbf{3 , 1 2 , 1 4 , 1 9 - 2 2 , 2 4 , 3 0 , 3 3 , 3 5 , 3 7 , 4 0) ~ a t ~} 171.1-166.2\right.$. ${ }^{b}$ Aromatic C -atoms of $(\mathbf{3}, \mathbf{1 2}, \mathbf{1 4}, \mathbf{1 9}-\mathbf{2 2}, \mathbf{2 4}, \mathbf{3 0}, \mathbf{3 5}, \mathbf{3 7}, 40)$ at $135.1-127.3$. ${ }^{c} \mathrm{Me}(\mathrm{Ms})$ of $\left(\mathbf{3 , 5 , 8 , 9 , 1 2 , 3 2 - 3 5 , 3 7 , 3 8) ~ a t ~} 38.9-37.6(q) .{ }^{d} \mathrm{Me}(\mathrm{OAc})\right.$ of $(19,20,22,24,33,34,40)$ at 20.8-19.5 (q) and $\mathrm{Me}(\mathrm{NAc})$ of 34 at 23.9 (q). ${ }^{e} \mathrm{PO}(\mathrm{OPh})_{2}$ of $(\mathbf{3 8 - 4 0})$ at 150.6 and $129.9-120.2 .{ }^{f} \mathrm{O}-\mathrm{C}-\mathrm{O}$ at 113.2 (s), Me_{2} at $25.0(\mathrm{q})$ and $23.6(\mathrm{q}) .{ }^{9} \mathrm{Me}-\mathrm{O}-\mathrm{C}(2)$ at 55.1 (q). * $\mathrm{A}=\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO, $B=\mathrm{C}^{2} \mathrm{HCl}_{3}, \mathrm{C}=\mathrm{C}^{2} \mathrm{H}_{3} \mathrm{CN}, \mathrm{D}=\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone.

Scheme 4 Reagents and conditions: i, $\left[\mathrm{H}_{2}\right]-\mathrm{Pd}$ black- $\mathrm{EtOH} ; \mathrm{ii}, \mathrm{Ac}_{2} \mathrm{O}-\mathrm{py}$; iii, $\mathrm{AcCl}-\mathrm{py} ; \mathrm{iv}, \mathrm{Bz}_{2} \mathrm{O}-\mathrm{py} ; \mathrm{v}, \mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O} ;$ vi, $\mathrm{BzCl}-\mathrm{py}$

$i{ }_{1}^{10}$
12

38

39

40

Scheme 5 Reagents and conditions: i, $(\mathrm{PhO})_{3} \mathrm{P}$-dioxane- $\mathrm{H}_{2} \mathrm{O}$
(Scheme 5); both exhibited characteristic ${ }^{13} \mathrm{C}$ NMR spectra ${ }^{21}$ (Table 2).

The 2- O-acetyl-3-azido-5'-benzamido-arabinofuranosylcompound 22 was analogously converted into 1-(2 - O -acetyl-3-benzamido-3,5-dideoxy-3-diphenylphosphoramido- β-D-arabinofuranosyl)uracil 40 in 83% yield.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral characteristics of all the reported compounds (Tables 1 and 2), together with their optical rotations (see Experimental section), IR (in particular, for the azido compounds with characteristic $v_{\text {max }} / \mathrm{cm}^{-1}$ ~ 2100), UV (in particular for the $2,5^{\prime}$ - and $2,2^{\prime}$-anhydro as well as 2 -OMe compound with $\lambda_{\text {max }} / \mathrm{nm} \sim 245$) and elemental analyses agreed with the proposed structures presented in this paper.

Experimental

M.p.s, uncorrected, were determined on a Kofler hot-stage apparatus. IR spectra were obtained for KBr pellets on a Perkin-Elmer 782 spectrophotometer. UV spectra were taken for solutions in ethanol on a Perkin-Elmer double-beam spectrophotometer model $124 .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL FX90Q and JEOL FX 100Q spectrometers with tetramethylsilane as the internal standard. Multiplicities $\mathrm{s}, \mathrm{d}, \mathrm{t}$ and q refer to off-resonances decoupled spectra. Optical rotations were measured in methanol, unless otherwise stated, on a Zeiss-Winkel 179707 apparatus. The silica gel (Merck HF_{254}, type 60) for TLC was activated at $110^{\circ} \mathrm{C}$ for $60 \mathrm{~min} . R_{\mathrm{f}}$ Values of the products were determined by developments in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 10: 1$ and located by UV illumination and a ninhydrin spray. Removal of the solvents under reduced pressure. DMF (dimethylformamide) and pyridine were dried and distilled over CaH_{2} and stored over molecular sieves (4 \AA). Mass spectra were recorded on a SHIMADZU GC-MS QP-1000 spectrometer; electron impact, ionizing voltage 70 eV.

General Procedure for the Hydrogenolysis-Benzoylation of the Azides 5, 10 and 22.-To a solution of the azide (0.34-1.31 mmol) in methanol ($7-35 \mathrm{~cm}^{3}$) Pd-black ($7-28 \mathrm{mg}$) and benzoic acid anhydride ($0.43-1.71 \mathrm{mmol}$) were added. The suspension was stirred in a H_{2} atmosphere at 0.35 MPa at room temperature for 24 h . The catalyst was filtered off and the filtrate evaporated to dryness. The residue was triturated with diethyl ether and recrystallized from methanol to give compounds 3 , 14 and 24.

2,2'-Anhydro-1-(5-benzamido-5-deoxy-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 3. From 5, 84.3\%; $R_{f} 0.17$; m.p. 194 $200^{\circ} \mathrm{C}$; identical (mixed m.p., NMR and IR spectra) with an authentic specimen (ref. 4).

1-(5-Benzamido-5-deoxy-2,3-epoxy- β-D-lyxofuranosyl)uracil 14. From 10: 97%; $R_{\mathrm{f}} 0.36$; m.p. $186-188^{\circ} \mathrm{C}$; identical (mixed m.p., NMR and IR spectra) with an authentic specimen (ref. 4).

1-(2-O-Acetyl-3,5-dibenzamido-3,5-dideoxy- β-D-arabinofuranosyl) uracil 24. From 22: 92\%; $R_{\mathrm{f}} 0.39$; m.p. 264-265 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 60.8 ; \mathrm{H}, 4.75$; $\mathrm{N}, 11.25 . \mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires $\mathrm{C}, 60.95 ; \mathrm{H}$, 4.9; N, 11.4%); $[\alpha]_{\mathrm{D}}^{22}+46$ (c 1 in DMF); $\lambda_{\text {max }} / \mathrm{nm} 227$ (log $\varepsilon 4.22) ; \lambda_{\text {inf1 }} / \mathrm{nm} 262\left(\log \varepsilon\right.$ 3.98); $\lambda_{\text {min }} / \mathrm{nm} 246(\log \varepsilon$ 4.06); $v_{\max } / \mathrm{cm}^{-1} 3271,3063,1750,1717,1706,1690,1639,1534$, $1268,1226,1218,1210,1114,822,803,715$ and 694.

General Procedure for the Azidolysis of the Mesylate 4^{1} and Oxiranes 14. ${ }^{4} 25 .{ }^{17}$-To a solution of mesylate or oxirane (1 mmol) in DMF ($40 \mathrm{~cm}^{3}$) sodium azide (2 mmol) was added. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 1 h for $4,2 \mathrm{~h}$ for $\mathbf{2 5}$ or for 1 day for 14 and then cooled. A precipitate was filtered off and the filtrate evaporated to dryness. The residue was crystallized from water as in the case of the azide 5 and purified by TLC
[$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 0.5)$, two developments] as in the case of the azido compounds 21 and 26.

2,2'-Anhydro-1-(5-azido-5-deoxy-3-O-methylsulfonyl- $\beta-\mathrm{D}-$ arabinofuranosyl)uracil 5. From 4: $93 \% ; R_{\mathrm{f}} 0.20$; m.p. 155$156^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 36.2 ; \mathrm{H}, 3.6 ; \mathrm{N}, 21.25 . \mathrm{C}_{10^{-}}$ $\mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}$ requires $\mathrm{C}, 36.45 ; \mathrm{H}, 3.35 ; \mathrm{N}, 21.25 \%$; $[\alpha]_{\mathrm{D}}{ }^{7}$ $-37.5\left(c 1\right.$ in DMF); $\lambda_{\text {max }} / \mathrm{nm} 245(\log \varepsilon 3.99) ; v_{\max } / \mathrm{cm}^{-1}$ 2154, 2113, 1664, 1637, 1613, 1528, 1495, 1362, 1284, 1179, 1094,961 and $829 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 7.85(1 \mathrm{H}, \mathrm{d}, J 7.6,6-\mathrm{H})$, $6.44\left(1 \mathrm{H}, \mathrm{d}, J 5.9,1^{\prime}-\mathrm{H}\right), 5.89(1 \mathrm{H}, \mathrm{d}, J 7.6,5-\mathrm{H}), 5.64(1 \mathrm{H}, \mathrm{d}, J$ $\left.5.9,2^{\prime}-\mathrm{H}\right), 5.38\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.64-4.49\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.60$ $\left(1 \mathrm{H}, \mathrm{dd}, J 13.5\right.$ and $\left.4.4,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.37(3 \mathrm{H}, \mathrm{s}, \mathrm{MsMe}), 3.36(1 \mathrm{H}$, dd, $J 13.5$ and 6.7, $5^{\prime}-\mathrm{H}_{\mathrm{B}}$).

1-(3-Azido-5-benzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 21. From 14: 78%; $R_{\mathrm{f}} 0.31$; m.p. $115-117^{\circ} \mathrm{C}$ (from acetone-hexane) (Found: C, 51.35; H, 4.7; N, 22.35. $\mathrm{C}_{16} \mathrm{H}_{16}{ }^{-}$ $\mathrm{N}_{6} \mathrm{O}_{5}$ requires $\mathrm{C}, 51.6 ; \mathrm{H}, 4.45 ; \mathrm{N}, 22.55 \%$) ; $[\alpha]_{\mathrm{D}}^{14}-117(c$ 1.02 in MeOH); $\lambda_{\text {max }} / \mathrm{nm} 218.5$ and $260(\log \varepsilon 4.13$ and 4.03), $\lambda_{\text {min }} / \mathrm{nm} 246$ (log ε 3.99); $v_{\text {max }} / \mathrm{cm}^{-1} 3314 \mathrm{br}, 3104,3054$, 2924, 2109, 1719, 1684br, 1634infl, 1534, 1459, 1270, 1069, 797, 707 and 688.

1-(2,5-Anhydro-3-azido-3-deoxy- β-D-arabinofuranosyl)uracil 26. From 25: $54.5 \% ; R_{\mathrm{f}} 0.45$; m.p. $227-229^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 43.2 ; \mathrm{H}, 3.85 ; \mathrm{N}, 27.65 . \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 43.05$; $\mathrm{H}, 3.6 ; \mathrm{N}, 27.9 \%$); $[\alpha]_{\mathrm{D}}^{28}+238(c 0.5$ in MeOH$) ; \lambda_{\text {max }} / \mathrm{nm}$ $264.5(\log \varepsilon 3.89) ; v_{\max } / \mathrm{cm}^{-1} 3126,3011,2892,2110,1714$, $1689,1674,1468,1397,1267,1058$ and $1016 ; \delta_{\mathbf{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) 11.27 (1 H, br s, 3-NH), 7.78 (1 H, d, J8.2, 6-H), 5.92 $\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 5.59(1 \mathrm{H}, \mathrm{d}, J 8.2,5-\mathrm{H}), 4.82\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 4.65$ $\left(1 \mathrm{H}, \mathrm{d}, J 2.6,3^{\prime}-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{q}, J 2.6\right.$ and $\left.0.9,4^{\prime}-\mathrm{H}\right), 4.07(1 \mathrm{H}$, $\left.\mathrm{d}, J 12.9,5^{\prime}-\mathrm{H}_{\mathrm{A}}\right)$ and $3.97\left(1 \mathrm{H}, \mathrm{d}, J 12.9,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right)$.

1-(5-Azido-5-deoxy- 3 -D-lyxofuranosyl)uracil 6.-(a) A solution of the $2,2^{\prime}$-anhydro compound $5(100 \mathrm{mg}, 0.3 \mathrm{mmol})$ in water ($4 \mathrm{~cm}^{3}$) was heated under reflux for 3 h and then evaporated to dryness. The residue crystallized from ethyl acetate to give the lyxofuranosyl isomer $6(76 \mathrm{mg}, 94 \%) ; R_{\mathrm{f}} 0.18$; m.p. $139-141{ }^{\circ} \mathrm{C}$ (Found: C, $40.25 ; \mathrm{H}, 4.4 ; \mathrm{N}, 26.0 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 40.15 ; \mathrm{H}, 4.1 ; \mathrm{N}, 26.0 \%$); $[\alpha]_{\mathrm{D}}^{24}+163(c 0.86$ in $\mathrm{MeOH}) ; \lambda_{\text {max }} / \mathrm{nm} 259(\log \varepsilon 3.93) ; v_{\text {max }} / \mathrm{cm}^{-1} 3423$, 3232, $3110,2110,1702,1677,1475,1276,1110,1064$ and 813.
(b) A solution of compound $5(200 \mathrm{mg}, 0.61 \mathrm{mmol})$ in 0.1 mol dm^{-3} aq. $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$ was heated under reflux for 1 h and then evaporated to dryness. The residue was purified by preparative $\mathrm{TLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 0.6)\right.$, two developments] to give $6(145 \mathrm{mg}, 90 \%)$, m.p. $138-140{ }^{\circ} \mathrm{C}$ (from ethyl acetate); identical (mixed m.p., NMR and IR spectra) with those obtained under (a).

1-(5-Azido-5-deoxy-2,3-O-isopropylidene- β-D-lyxofuranosyl)uracil 7.-A suspension of the lyxofuranosyl compound 6 (70 $\mathrm{mg}, 0.26 \mathrm{mmol})$ and dry cuprous sulfate $(126 \mathrm{mg}, 0.77 \mathrm{mmol})$ in acetone ($4 \mathrm{~cm}^{3}$) and sulfuric acid ($2.4 \times 10^{-3} \mathrm{~cm}^{3}$) was heated at $37{ }^{\circ} \mathrm{C}$ for 45 h . The resulting precipitate was filtered off (Celite column) and the filtrate treated with dry calcium hydroxide (62 $\mathrm{mg}, 0.84 \mathrm{mmol}$). This mixture was stirred at room temperature for 1 h after which the resulting precipitate was filtered off and the filtrate evaporated to dryness. The residue was subjected to preparative TLC [$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 0.6)$, two developments] to give the acetonide $7(74 \mathrm{mg}, 92.5 \%) ; R_{\mathrm{f}} 0.39 ;$ m.p. $112-115^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 46.5 ; \mathrm{H}, 5.15 ; \mathrm{N}, 22.6 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\mathrm{C}, 46.6 ; \mathrm{H}, 4.9 ; \mathrm{N}, 22.65 \%$); $[\alpha]_{\mathrm{D}}^{22}+158(c 1.15$ in $\mathrm{MeOH}) ; \lambda_{\text {max }} / \mathrm{nm} 260(\log \varepsilon 3.99) ; v_{\text {max }} / \mathrm{cm}^{-1} 3549,3474$, 3429, 2103, 1714infl, 1694br, 1625, 1458, 1386, 1285, 1210, 1112 and 880 .

1-(5-Azido-5-deoxy-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 8 -To a solution of compound $5(200 \mathrm{mg}, 0.61$
$\mathrm{mmol})$ in acetone-water $\left(1: 1 ; 50 \mathrm{~cm}^{3}\right)$ the ion exchanger Dowex $50\left(\mathrm{H}^{+}\right)(640 \mathrm{mg})$ was added. The mixture was stirred at room temperature for 72 h and then filtered. The filtrate was evaporated to dryness and the residue crystallized from dichloromethane-diethyl ether-hexane to give the ring-opened product 8 ($174 \mathrm{mg}, 82.5 \%$); $R_{\mathrm{f}} 0.3$; m.p. $83-84^{\circ} \mathrm{C}$ (Found: C, 34.4; H, 3.95; N, 19.9. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}$ requires C, 34.6; H, 3.75; $\mathrm{N}, 20.15 \%) ;[\alpha]_{\mathrm{D}}^{23}+215(c 0.91$ in MeOH$) ; \lambda_{\max } / \mathrm{nm} 258(\log$ $\varepsilon 4.08$); $v_{\max } / \mathrm{cm}^{-1} 3480 \mathrm{infl}, 3247 \mathrm{br}, 3032,2111,1694 \mathrm{br}$, 1630infl, 1469, 1360, 1281, 1177, 966, 843 and 812.

1-(5-Azido-5-deoxy-2,3-di-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 9.-A solution of the arabinofuranosyluracil 8 $(160 \mathrm{mg}, 0.46 \mathrm{mmol})$ in pyridine $\left(5 \mathrm{~cm}^{3}\right)$ was treated with methanesulfonyl chloride ($75.5 \mathrm{mg}, 0.66 \mathrm{mmol}$) at room temperature for 24 h . The solvent was coevaporated with toluene and the residue washed with ice-water. It was then subjected to preparative $\mathrm{TLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 0.6)\right.$, two developments] to give the $2^{\prime}-O$-mesyl compound $9(147 \mathrm{mg}$, 75%); $R_{\mathrm{f}} 0.42$; m.p. $80-82^{\circ} \mathrm{C}$ (from dichloromethane-diethyl ether-hexane) (Found: C, 31.25; H, 3.7; N, 16.6. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{~S}_{2}$ requires $\mathrm{C}, 31.05 ; \mathrm{H}, 3.55 ; \mathrm{N}, 16.45 \%$); $[\alpha]_{\mathrm{D}}^{26}+103$ (c 0.75 in $\mathrm{MeOH}) ; \quad \lambda_{\text {max }} / \mathrm{nm} 253.5(\log \varepsilon 3.98) ; v_{\text {max }} / \mathrm{cm}^{-1} 3440 \mathrm{br}$, 3214, 3032, 2113, 1695br, 1632, 1463, 1365, 1288, 1179, 968, 879 and 821 .

1-(5-Azido-5-deoxy-2,3-epoxy- β-D-lyxofuranosyl)uracil 10.A solution of compound 5 ($300 \mathrm{mg}, 0.91 \mathrm{mmol}$) in $0.48 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{NaOH}\left(3.79 \mathrm{~cm}^{3}, 1.82 \mathrm{mmol}\right)$ was kept at room temperature for 30 min . The mixture was neutralized with $0.65 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl . The crystalline precipitate was filtered off and washed with methanol. It afforded the oxirane $10(210 \mathrm{mg}, 92 \%) ; R_{\mathrm{f}} 0.42 ; \mathrm{m} . \mathrm{p}$. $186-188^{\circ} \mathrm{C}$ (from MeOH) (Found: C, 43.1; H, 3.75; N, 28.15. $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires C, 43.05; H, 3.6; N, 27.9\%); [$\left.\alpha\right]_{\mathrm{D}}^{24}+116$ (c 0.56 in MeOH); $\lambda_{\text {max }} / \mathrm{nm} 259(\log \varepsilon 3.93) ; v_{\text {max }} / \mathrm{cm}^{-1} 3125,3003$, 2807, 2131, 2092, 1695, 1682, 1469, 1388, 1260, 1120, 1083, 851, 828 and $800 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 11.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{NH}), 7.64$ (1 $\mathrm{H}, \mathrm{d}, J 8.2,6-\mathrm{H}), 6.08\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 5.64(1 \mathrm{H}, \mathrm{d}, J 8.2,5-\mathrm{H}), 4.29-$ $3.99\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$ and $3.60\left(2 \mathrm{H}, \mathrm{d}, J 5.9,5^{\prime}-\mathrm{H}_{2}\right)$.

1-(5-Azido-5-deoxy-2,3-epoxy- β-D-lyxofuranosyl)-2-O-methyluracil 11.-A solution of compound $5(200 \mathrm{mg}, 0.61 \mathrm{mmol})$ in methanolic $0.35 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium methoxide ($3.5 \mathrm{~cm}^{3}, 1.22$ mmol) was set aside at room temperature for 30 min . The solution was neutralized with $0.65 \mathrm{dm}^{-3}$ aq. HCl to give a crystalline product, identified as the oxirane $10(49 \mathrm{mg}, 32 \%$), m.p. $185-188^{\circ} \mathrm{C}$; identical (mixed m.p., NMR and IR spectra) with an authentic specimen. The mother liquor was evaporated to dryness and the oily residue purified by preparation TLC [$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (10:0.6), two developments] to give the $2-\mathrm{O}-$ methyloxirane 11 ($108 \mathrm{mg}, 66.7 \%$); $R_{\mathrm{f}} 0.40$ (Found: C, $45.4 ; \mathrm{H}$, 4.45; $\mathrm{N}, 26.3 . \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $\mathrm{C}, 45.25 ; \mathrm{H}, 4.2 ; \mathrm{N}, 26.4 \%$); $[\alpha]_{\mathrm{D}}^{24}+51(c 0.36$ in MeOH$) ; \lambda_{\text {max }} / \mathrm{nm} 242.5(\log \varepsilon 4.14) ;$ $v_{\text {max }} / \mathrm{cm}^{-1} 2103,1650,1524,1454,1384,1240,1101$ and 828 ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO $) 7.77(1 \mathrm{H}, \mathrm{d}, J 7.9,6-\mathrm{H}), 6.18\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right)$, $5.84(1 \mathrm{H}, \mathrm{d}, J 7.9,5-\mathrm{H}), 4.43-4.07\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$, 3.96 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), $3.70\left(2 \mathrm{H}, \mathrm{d}, J 5.9,5^{\prime}-\mathrm{H}_{2}\right.$).

1-(5-Benzamido-5-deoxy-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 12.-To a solution of the $2,2^{\prime}$-anhydro- 5^{\prime} benzamido compound 3 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) in acetone-water $1: 1\left(20 \mathrm{~cm}^{3}\right)$ the ion exchanger Dowex $50\left(\mathrm{H}^{+}\right)(260 \mathrm{mg})$ was added. This suspension was stirred at room temperature for 72 h and filtered. The filtrate was evaporated to dryness and the residue crystallized from methanol-diethyl ether to give the ring-opened product $12(89 \mathrm{mg}, 84 \%)$; $R_{\mathrm{f}} 0.27$; m.p. $174-176{ }^{\circ} \mathrm{C}$ (Found: C, $48.05 ; \mathrm{H}, 4.6 ; \mathrm{N}, 10.0 . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ requires C , $48.0 ; \mathrm{H}, 4.5 ; \mathrm{N}, 9.9 \%$); $[\alpha]_{\mathrm{D}}^{28}+161$ (c 1.09 in MeOH);
$\lambda_{\text {max }} / \mathrm{nm} 219$ and $260(\log \varepsilon 4.10$ and 4.00$) ; \lambda_{\text {min }} / \mathrm{nm} 244$ ($\log \varepsilon 3.96$); $v_{\text {max }} / \mathrm{cm}^{-1} 3394,3313,3107,3019,1722,1695$, $1630,1542,1454,1354,1280,1180,965$ and 847.

1-(3-Amino-5-azido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 15 and 1-(2-Amino-5-azido-2,5-dideoxy- β-D-xylofuranosyl)uracil 16.-A solution of the oxirane $10(200 \mathrm{mg}, 0.79 \mathrm{mmol})$ in 15% ethanolic ammonia ($7 \mathrm{~cm}^{3}$) was heated in a pressure vessel at $130^{\circ} \mathrm{C}$ for 5 h and then evaporated to dryness. It afforded the arabinofuranosyl $15, R_{\mathrm{f}} 0.05$, and xylofuranosyl isomer 16 , $R_{\mathrm{f}} 0.04$, in a ratio $2: 1$ (established by ${ }^{1} \mathrm{H}$ NMR spectra), used for further experiments.

General Procedure for the Hydrogenolysis of Azides 10, 22, 26 and 5.-To a solution of the azides (0.4 mmol) in ethanol (30 cm^{3}) Pd-black (9 mg) was added and stirred in a H_{2} atmosphere at 0.35 MPa at room temperature for 18 h . The catalyst was filtered off and the filtrate evaporated to dryness as in the case of the amino compounds 13 and 23 (used for further experiment). The residue was recrystallized from methanol as in the case of the amino compound 29 and rearranged imine 32.
1-(5-Amino-5-deoxy-2,3-epoxy- β-d-lyxofuranosyl)uracil 13. From 10: 99\%; $R_{\mathrm{f}} 0.03$.
1-(2-O-Acetyl-3-amino-5-benzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 23. From 22: $98 \% ; R_{\mathrm{f}} 0.13$.
1-(3-Amino-2,5-anhydro-3-deoxy- β-D-arabinofuranosyl)uracil 29. From 26: 82%; $R_{\mathrm{f}} 0.09$; m.p. 244- $246{ }^{\circ} \mathrm{C}$ (Found: C, $47.75 ; \mathrm{H}$, $5.15 ; \mathrm{N}, 18.4 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 48.0 ; \mathrm{H}, 4.9 ; \mathrm{N}, 18.65 \%$); $[\alpha]_{\mathrm{D}}^{25}+337(c 0.23$ in MeOH$) ; \lambda_{\text {max }} / \mathrm{nm} 264(\log \varepsilon 3.93) ;$ $v_{\text {max }} / \mathrm{cm}^{-1} 3388,3318,3103,3023,2993,1772,1708,1683 \mathrm{infl}$, 1665,1650 infl, 1601, 1463, 1414, 1382, 1272, 1262, 1095 and 963; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $7.91(1 \mathrm{H}, \mathrm{d}, J 8.2,6-\mathrm{H}), 6.25\left(1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right)$, $5.69(1 \mathrm{H}, \mathrm{d}, J 8.2,5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 4.29(1 \mathrm{H}, \mathrm{q}, J 2.4$ and $\left.1.2,4^{\prime}-\mathrm{H}\right), 4.04\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.5^{\prime}-\mathrm{H}_{2}\right), 3.77\left(1 \mathrm{H}, \mathrm{d}, J 2.4,3^{\prime}-\mathrm{H}\right)$.

2,5'-Imino-1-(2-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 32. From 5, $94 \% ; R_{\mathrm{f}} 0.05$; m.p. 201-203 ${ }^{\circ} \mathrm{C}$ (Found: C, 39.4; $\mathrm{H}, 4.4 ; \mathrm{N}, 13.65 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$ requires $\mathrm{C}, 39.6 ; \mathrm{H}, 4.3$; N , 13.85%); $[\alpha]_{\mathrm{D}}^{33}-73$ (c 0.85 in DMF); $\lambda_{\text {max }} / \mathrm{nm} 215.5(\log \varepsilon$ 4.38); $\lambda_{\text {max }} / \mathrm{cm}^{-1} 3550 \mathrm{infl}, 3480,3429$, 3240infl, 2899, 1649, $1611,1532,1496,1453,1342,1178,997$ and 972.

General Procedure for the Benzoylation of Amines 13, $15+$ 16, 23, 29 and the Imine 32.-To a solution of amine (0.4 mmol) or imine (0.16 mmol) in pyridine ($5 \mathrm{~cm}^{3}$) benzoic acid anhydride (0.44 mmol) was added and the mixture kept at room temperature (45 min in the case of the amino compounds and 6 h in the case of the imino compound). The solvent was coevaporated with toluene. The residue was washed with diethyl ether and subjected to preparative $\operatorname{TLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ (10:0.5), three developments].
1-(5-Benzamido-3-deoxy-2,3-epoxy- β-D-lyxofuranosyl)uracil 14. From 13: 92%; m.p. ${ }^{186-188^{\circ} \mathrm{C} \text {; identical (mixed m.p., }}$ NMR and IR spectra) with a specimen obtained by the hydro-genolysis-benzoylation of the azido compound 10.

1-(5-Azido-3-benzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 17 and 1-(5-Azido-2-benzamido-2,5-dideoxy- β-D-xylofuranosyl)uracil 18. From a mixture of the amino compound 15 and 16: 47% of $17 ; R_{\mathrm{f}} 0.19$, and 36% of $18 ; R_{\mathrm{f}} 0.15$; both used for further experiments.

1-(2-O-Acetyl-3,5-dibenzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 24. From 23: $81 \% ; R_{\mathrm{f}} 0.39$; m.p. $264-265^{\circ} \mathrm{C}$ (from MeOH); identical (mixed m.p., NMR and IR spectra) with a specimen obtained by the hydrogenolysis-benzoylation of the azido compound 22.

1-(2,5-Anhydro-3-benzamido-3-deoxy- β-D-arabinofuranosyl)uracil 30. From 29: 76\%; $R_{\mathrm{f}} 0.26$; m.p. $263-265{ }^{\circ} \mathrm{C}$ (from MeOH) (Found: C, 58.5; H, 4.45; N, 12.95. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $58.35 ; \mathrm{H}, 4.6 ; \mathrm{N}, 12.75 \%$); $[\alpha]_{\mathrm{D}}^{25}+92$ (c 0.45 in MeOH);
$\lambda_{\max } / \mathrm{nm} 220$ and $261.5(\log \varepsilon 4.16$ and 4.12$) ; \lambda_{\text {min }} / \mathrm{nm} 245$ $(\log \varepsilon 4.06) ; v_{\max } / \mathrm{cm}^{-1} 3312,3262,3012,2957,1707,1689$, $1685,1632,1527,1456,1280,1262,1039,921$ and $859 ; \delta_{\mathbf{H}^{-}}$ ($\left[{ }^{2} \mathrm{H}_{6}\right]$-DMSO) $11.37(1 \mathrm{H}$, br s, $3-\mathrm{NH}), 9.07-9.03(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{NH}\right), 7.98-7.87$ and $7.58-7.41(2+3 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{ArH}), 7.86$ (1 H, d, J 7.9, 6-H), 5.99 ($\left.1 \mathrm{H}, \mathrm{s}, 1^{\prime}-\mathrm{H}\right), 5.61$ ($\left.1 \mathrm{H}, \mathrm{d}, J 7.9,5-\mathrm{H}\right)$, $4.91\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{H}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J 2.6,3^{\prime}-\mathrm{H}\right), 4.34(1 \mathrm{H}, \mathrm{t}, J 2.6$, $\left.4^{\prime}-\mathrm{H}\right)$ and $4.04\left(2 \mathrm{H}\right.$, br s, $\left.5^{\prime}-\mathrm{H}_{2}\right)$.

2,5'-Imino-1-(2-O-benzoyl-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 35. From 32: $53.7 \% ; R_{\mathrm{f}} 0.30$; m.p. $148-150^{\circ} \mathrm{C}$ (from dichloromethane-diethyl ether-hexane) (Found: C , 49.85; $\mathrm{H}, 4.35 ; \mathrm{N}, 10.4 . \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 50.1 ; \mathrm{H}, 4.2$; $\mathrm{N}, 10.3 \%) ;[\alpha]_{\mathrm{D}}^{33}+32(c 0.55$ in MeOH$) ; ~ \lambda_{\max } / \mathrm{nm} 222.5(\log$ \& 4.43); $v_{\text {max }} / \mathrm{cm}^{-1} 3393,3156,3022,2935,1735,1661,1497$, $1409,1354,1262,1176,1114,965,870$ and 826 . The by-product 3 was isolated in 33.7% yield; identical (NMR and IR spectra) with an authentic specimen.

General Procedure for the Acetylation of Secondary Alcohols 17. 18, 21 and Imine 32.-To a solution of alcohol or imine (0.19 mmol) in pyridine ($7 \mathrm{~cm}^{3}$) acetic anhydride (0.39 mmol) was added and the mixture kept at room temperature for 24 h as in the case of alcohols or 2 h as in the case of the imino compound. The solvent was coevaporated with toluene. The residue was purified by preparative $\mathrm{TLC}\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ (10:0.6)].

1-(2-O-Acetyl-5-azido-3-benzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 19. From 17: $62 \% ; R_{\mathrm{f}} 0.24$; m.p. $184-186^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 52.1 ; \mathrm{H}, 4.65 ; \mathrm{N}, 20.1 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires $\mathrm{C}, 52.15 ; \mathrm{H}, 4.4 ; \mathrm{N}, 20.3 \%$); $[\alpha]_{\mathrm{D}}^{22}-67$ (c 0.93 in DMF); $i_{\text {max }} / \mathrm{nm} 224$ and $255(\log \varepsilon 3.78$ and 3.74$) ; \lambda_{\text {min }} / \mathrm{nm}$ $244(\log \varepsilon 3.72) ; v_{\max } / \mathrm{cm}^{-1} 3317,3178,3053,2089,1746$, $1696,1674,1622,1537,1468,1420,1258,1223,1212,1043,859$, 802 and 714.

1-(3-O-Acetyl-5-azido-2-benzamido-2,5-dideoxy- β-D-xylofuranosyl)uracil 20. From 18: 67\%; $R_{\mathrm{f}} 0.24$; m.p. $125-127^{\circ} \mathrm{C}$ (from acetone) (Found: C, 52.25; $\mathrm{H}, 4.3 ; \mathrm{N}, 20.15 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{8}$ requires $\mathrm{C}, 52.15 ; \mathrm{H}, 4.4 ; \mathrm{N}, 20.3 \%) ;[\alpha]_{\mathrm{D}}^{21}+272(c 1.19$ in $\mathrm{MeOH}) ; \hat{\lambda}_{\max } / \mathrm{nm} 219.9$ and $256.8(\log \varepsilon 4.03$ and 3.95$)$; $\lambda_{\min } / \mathrm{nm} 247.5(\log \varepsilon 3.94) ; \nu_{\max } / \mathrm{cm}^{-1} 3460 \mathrm{infl}, 3295,3062$, $2109,1756,1689,1645,1537,1533,1462,1273,1225,1217$, 1064, 816, 717 and 692.

1-(2-O-Acetyl-3-azido-5-benzamido-3,5-dideoxy- β-D-arabinofuranosyl)uracil 22. From 21: $71 \% ; R_{\mathrm{f}} 0.44$; m.p. $86-88{ }^{\circ} \mathrm{C}$ from dichloromethane-diethyl ether-hexane) (Found: C, 52.4; H, 4.55; $\mathrm{N}, 20.25 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{6}$ requires $\mathrm{C}, 52.15 ; \mathrm{H}, 4.4 ; \mathrm{N}, 20.3 \%$; $[\alpha]_{\mathrm{D}}^{22}+87.5(c 0.8$ in MeOH$) ; \lambda_{\max } / \mathrm{nm} 220$ and $256(\log \varepsilon$ 4.01 and 3.89$) ; \lambda_{\text {min }} / \mathrm{nm} 246(\log \varepsilon 3.88) ; v_{\max } / \mathrm{cm}^{-1} 3344$, 3203, $3061,2932,2111,1753,1713 \mathrm{infl}, 1693 \mathrm{br}, 1647 \mathrm{infl}, 1536$, 1459, 1377, 1280, 1218, 1104, 810, 714 and 693.

2,5'-Imino-1-(2-O-acetyl-3-O-methylsulfonyl- β-D-arabinofuranosyl)uracil 33. From 32: 79.6\%; $R_{\mathrm{f}} 0.22$; m.p. $217-219^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 41.9 ; \mathrm{H}, 4.65 ; \mathrm{N}, 12.3 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 41.75 ; \mathrm{H}, 4.4 ; \mathrm{N}, 12.15 \%$) ; $[\alpha]_{\mathrm{D}}^{23}-46$ (c 0.75 in $\mathrm{MeOH}) ; i_{\max } / \mathrm{nm} 218.5(\log \varepsilon 4.35) ; v_{\max } / \mathrm{cm}^{-1} 3414,3225$, 3084, 2934, 1750, 1663, 1624, 1576, 1502, 1410, 1223, 1177, 1000 and 970 . From methanolic mother liquor an additional amount of 33 was isolated by preparative TLC; overall yield 92%.

Intramolecular Rearrangements of the 2,5'-Imino Compound 32.-To a solution of $32(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in pyridine $\left(6 \mathrm{~cm}^{3}\right)$ benzoyl chloride ($50 \mathrm{mg}, 0.36 \mathrm{mmol}$) was added and the mixture stirred at room temperature for 1.5 h ; it was then treated with methanol $\left(8 \mathrm{~cm}^{3}\right)$. The solvent was coevaporated with toluene. The residue was recrystallized from methanol to give the crystalline $2,2^{\prime}$-anhydro compound $3(48 \mathrm{mg}, 74 \%$), m.p. $186-$ $188^{\circ} \mathrm{C}$; identical (mixed m.p., NMR and IR spectra) with an
authentic specimen. From the mother liquor 12 was also isolated by preparative TLC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10: 0.6)\right](16 \mathrm{mg}$, 23.5%), m.p. $173-176^{\circ} \mathrm{C}$; identical (mixed m.p., NMR and IR spectra) with that obtained from the $2,2^{\prime}$-anhydro compound 3 .
$5^{\prime}-\mathrm{N}$-Acetyl-2,5'-imino-1-(2-O-acetyl-3-O-methylsulfonyl- β -D-arabinofuranosyl)uracil 34.-To a solution of the $2,5^{\prime}$-imino compound 32 ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$) in pyridine ($5 \mathrm{~cm}^{3}$) acetyl chloride ($98 \mathrm{mg}, 1.25 \mathrm{mmol}$) was added and the mixture stirred at room temperature for 1 h . The solvent was coevaporated with toluene and the residue purified by preparative TLC [$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (10:0.6), two developments] and recrystallized from methanol-diethyl ether. It afforded the $5^{\prime}-N$-acetyl compound 34 ($86 \mathrm{mg}, 85 \%$); $R_{\mathrm{f}} 0.42$; m.p. $126-129^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 43.2 ; \mathrm{H}, 4.75 ; \mathrm{N}, 10.75 . \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ requires C , $43.4 ; \mathrm{H}$, $4.4 ; \mathrm{N}, 10.85 \%) ;[\alpha]_{\mathrm{D}}^{22}-131(c 0.54$ in MeOH$) ; \lambda_{\text {max }} / \mathrm{nm} 230$ ($\log \varepsilon 4.33$); $v_{\text {max }} / \mathrm{cm}^{-1} 1750,1689,1668,1657,1651,1645$, $1520,1361,1220,1175,1069$ and 968.

5'-N-Benzoyl-2,5'-imino-1-(2-O-benzoyl-3-O-methylsulfonyl-β-D-arabinofuranosyl)uracil 37.-To a solution of the $2,5^{\prime}$-imino compound 35 ($36 \mathrm{mg}, 0.09 \mathrm{mmol}$) in pyridine ($5 \mathrm{~cm}^{3}$) benzoyl chloride ($24.4 \mathrm{mg}, 0.17 \mathrm{mmol}$) was added. The mixture was then stirred at room temperature for 15 min and treated with methanol ($4 \mathrm{~cm}^{3}$). The solvent was coevaporated with toluene and the residue purified by preparative TLC $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ 10:0.6). It afforded the $5^{\prime}-N$-benzoyl compound $37(38 \mathrm{mg}$, 82.6%); $R_{\mathrm{f}} 0.42$; m.p. $151-153^{\circ} \mathrm{C}$ (from acetone) (Found: C, $56.15 ; \mathrm{H}, 4.05 ; \mathrm{N}, 8.35 . \mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ requires $\mathrm{C}, 56.35 ; \mathrm{H}, 4.15$; $\mathrm{N}, 8.2 \%$); $[\alpha]_{\mathrm{D}}^{22}-171$ (c 0.42 in MeOH$) ; ~ \lambda_{\text {max }} / \mathrm{nm} 228.5$ (log $\varepsilon 4.34) ; v_{\text {max }} / \mathrm{cm}^{-1} 1736,1652,1512,1451,1358,1269,1175$, $1119,1071,971,878$ and 830.

General Procedure for the Preparation of Diphenylphosphoramidates 38-40.-To a suspension of the azide 5, 10 or 22 (0.45 mmol) in dioxane ($9 \mathrm{~cm}^{3}$) triphenyl phosphite (3.05 mmol) was added and the mixture heated under reflux in the presence of equimolar amount of water (1.5 h in the case of 5 and 3 h in the case of 10 and 22). The reaction mixture was evaporated to dryness and the residue subjected to preparative TLC $\left[\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}(10: 0.7)$, two developments].

2,2'-Anhydro-1-(5-deoxy-5-diphenylphosphoramido-3-O-meth-ylsulfonyl- β-D-arabinofuranosyl)uracil 38. From 5: $89.3 \% ; R_{f}$ 0.18 ; m.p. $228-230{ }^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 49.15 ; \mathbf{H}, 4.4$; $\mathrm{N}, 8.1 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{PS}$ requires $\mathrm{C}, 49.35 ; \mathrm{H}, 4.15 ; \mathrm{N}, 7.85 \%$); $[\alpha]_{\mathrm{D}}^{24}-40\left(c \quad 0.2\right.$ in DMF); $\lambda_{\max } / \mathrm{nm} 221$ and $245(\log \varepsilon$ 3.79 and 3.72); $\lambda_{\text {min }} / \mathrm{nm} 234(\log \varepsilon 3.70) ; v_{\text {max }} / \mathrm{cm}^{-1} 3152$, 3092, 2932, 1660, 1634infl, 1638infl, 1622, 1534, 1477, 1337, 1254, $1196,1173,1023,951,940,915,902,841$ and $823 ; \delta_{\mathbf{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) $7.75(1 \mathrm{H}, \mathrm{d}, J 7.6,6-\mathrm{H}), 7.45-7.11(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.40$ $\left(1 \mathrm{H}, \mathrm{d}, J 5.6,1^{\prime}-\mathrm{H}\right), 6.05\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{NH}\right), 5.85(1 \mathrm{H}, \mathrm{d}, J 7.6$, $5-\mathrm{H}), 5.62\left(1 \mathrm{H}, \mathrm{d}, J 5.6,2^{\prime}-\mathrm{H}\right), 5.46\left(1 \mathrm{H}, \mathrm{d}, J 2.4,3^{\prime}-\mathrm{H}\right), 4.33$ (1 H , sext, $J 2.4$ and $\left.7.1,4^{\prime}-\mathrm{H}\right), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{MsMe})$ and 3.02-2.91 ($2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}$); m/z $535\left(\mathrm{M}^{+}\right)$.

1-(5-Deoxy-5-diphenylphosphoramido-2,3-epoxy- β-D-lyxofuranosyl)uracil 39. From 10: 78\%; $R_{\mathrm{f}} 0.36$; m.p. $128-130^{\circ} \mathrm{C}$ (from dichloromethane-diethyl ether-hexane) (Found: C, $54.95 ; \mathrm{H}$, 4.65; $\mathrm{N}, 9.05 . \mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{PS}$ requires $\mathrm{C}, 55.15 ; \mathrm{H}, 4.4 ; \mathrm{N}$, 9.2%); $[\alpha]_{\mathrm{D}}^{32}+21$ (c. 1 in MeOH); $\lambda_{\text {max }} / \mathrm{nm} 256(\log \varepsilon$ 3.94); $v_{\text {max }} / \mathrm{cm}^{-1} 3419,3168,3067,2922,1758,1717,1696,1673$, $1648,1634,1519,1488,1459,1385,1255,1218,1196,1103,957$, 907, 888 and $811 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 11.06(1 \mathrm{H}$, br s, 3-NH), $7.59(1 \mathrm{H}, \mathrm{d}, J 8.2,6-\mathrm{H}), 7.46-7.06(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.99(1 \mathrm{H}, \mathrm{s}$, $\left.1^{\prime}-\mathrm{H}\right), 5.91-5.72\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{NH}\right), 5.57(1 \mathrm{H}, \mathrm{d}, J 8.2,5-\mathrm{H}), 4.07-$ $3.87\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 3.30(1 \mathrm{H}, \mathrm{dd}, J 12.6$ and 1.8 , $\left.5^{\prime}-\mathrm{H}_{\mathrm{A}}\right), 3.22\left(1 \mathrm{H}, \mathrm{dd}, J 12.6\right.$ and $\left.2.1,5^{\prime}-\mathrm{H}_{\mathrm{B}}\right) ; m / z 457\left(\mathrm{M}^{+}\right)$.

1-(2-O-Acetyl-5-benzamido-3,5-dideoxy-3-diphenylphosphor-amido- β-D-arabinofuranosyl)uracil 40. From 22: 83\%; $R_{\mathrm{f}} 0.42$;
m.p. 197-200 ${ }^{\circ} \mathrm{C}$ (from MeOH) (Found: C, $57.9 ; \mathrm{H}, 4.95 ; \mathrm{N}, 9.0$. $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{P}$ requires $\mathrm{C}, 58.05 ; \mathrm{H}, 4.7 ; \mathrm{N}, 9.05 \%$; $[\alpha]_{\mathrm{D}}^{23}$ +66 ($c 0.7$ in MeOH); $\lambda_{\text {max }} / \mathrm{nm} 253$ (log $\varepsilon 4.07$); $\lambda_{\text {infl }} / \mathrm{nm} 228$ $(\log \varepsilon 4.09) ; \lambda_{\text {min }} / \mathrm{nm} 240(\log \varepsilon 4.05) ; v_{\text {max }} / \mathrm{cm}^{-1} 3369$, 3168, 3067, 2922, 1758, 1717, 1696, 1673, 1648, 1634, 1519, 1488, $1459,1385,1255,1218,1196,1103,957,907$ and $811 ; m / z 621$ $\left(\mathrm{M}^{+}\right)$.

Acknowledgements

We thank the Croatian Scientific Research Foundation and the European Communities Commission-International Scientific Cooperation (Contract No. CI1/0523) for their support of this work.

References

1 J. F. Codington, R. Fecher and J. J. Fox, J. Am. Chem. Soc., 1960, 82 2794.

2 R. Fecher, J. F. Codington and J. J. Fox, J. Am. Chem. Soc., 1961, 83 1889.

3 N. C. Yung, J. H. Burchenal, R. Fecher, R. Duschinsky and J. J. Fox, J. Am. Chem. Soc., 1961, 83, 4060.

4 V. Škarić, D. Katalenić, D. Škarić and I. Salaj, J. Chem. Soc. Perkin Trans. 1, 1982, 2091
5 T.-S. Lin, J.-Y.Guo, R. F. Schinazi, C. K. Chu, J.-N. Xiang and W. H. Prusoff, J. Med. Chem., 1988, 31, 336.
6 M. Millard, A. Faraj, F. Frappier, J.-C. Florent, D. S. Grierson and C. Monneret, Tetrahedron Lett., 1989, 30, 197.

7 H. Mitsuya, K. J. Weinhold, P. A. Furman, M. H. St. Clair and S. Nusinoff, Proc. Nat. Acad. Sci. USA, 1985, 82, 7096.
8 F. M. Unger, R. Christian and P. Waldstatten, Tetrahedron Lett., 1979, 605.
9 A. M. Ozols, A. V. Azhayev, A. A. Krayevsky, A. S. Ushakov, N. V. Gnuchev and B. P. Gottikh, Synthesis, 1980, 559.
10 K. Kikugawa, M. Ichino, T. Kusama and T. Ukita, Chem. Pharm. Bull., 1969, 17, 798.
11 J. P. Horwitz, A. J. Thompson and J. A. Urbanski, J. Org. Chem., 1962, 27, 3045.
12 T.-S. Lin and W. H. Prusoff, J. Carbohydr. Nucleosides Nucleotides, 1975, 2, 185.
13 M. Hirata, Chem. Pharm. Bull., 1968, 16, 291.
14 T. Naito, M. Hirata, Y. Nakai, T. Kobayashi and M. Kano, Chem. Pharm. Bull., 1965, 13, 1258.
15 J. Brokeš and J. Beránek, Collect. Czech. Chem. Commun., 1975, 40, 3061.

16 M. Christl, H. J. Reich and J. D. Roberts, J. Am. Chem. Soc., 1971, 93, 3463.

17 J. F. Codington, R. Fecher and J. J. Fox, J. Org. Chem., 1962, 27, 163.
18 A. J. Jones, D. M. Grant, M. W. Winkley and R. K. Robins, J. Am. Chem. Soc., 1970, 92, 4079.
19 W. Freist, K. Schattka, F. Cramer and B. Jastroff, Chem. Ber., 1972, 105, 991.
20 V. Kvita and G. Baschang, Helv. Chim. Acta, 1972, 55, 2683.
21 H. H. Mantsch and J. C. P. Smith, Biochem. Biophys. Res. Commun., 1972, 46, 808.

Paper 1/05105I
Received 8th October 1991
Accepted 8th January 1992

